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Abstract. Accurate quantitative precipitation estimates are
of crucial importance for hydrological studies and applica-
tions. When spatial precipitation fields are required, rain
gauge measurements are often combined with weather radar
observations. In this paper, we evaluate several radar-gauge
merging methods with various degrees of complexity: from
mean field bias correction to geostatistical merging tech-
niques. The study area is the Walloon region of Belgium,
which is mostly located in the Meuse catchment. Observa-
tions from a C-band Doppler radar and a dense rain gauge
network are used to estimate daily rainfall accumulations
over this area. The relative performance of the different
merging methods are assessed through a comparison against
daily measurements from an independent gauge network. A
4-year verification is performed using several statistical qual-
ity parameters. It appears that the geostatistical merging
methods perform best with the mean absolute error decreas-
ing by 40% with respect to the original data. A mean field
bias correction still achieves a reduction of 25%. A seasonal
analysis shows that the benefit of using radar observations
is particularly significant during summer. The effect of the
network density on the performance of the methods is also
investigated. For this purpose, a simple approach to remove
gauges from a network is proposed. The analysis reveals that
the sensitivity is relatively high for the geostatistical methods
but rather small for the simple methods. The geostatistical
merging methods give the best results for all tested network
densities and their relative benefit increases with the network
density.
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1 Introduction

Interest in quantitative estimation of rainfall based on
weather radar has increased during the last years. Indeed new
applications have risen in the field of distributed hydrologi-
cal modelling or numerical weather prediction which require
accurate precipitation estimates at high spatial resolution.

Weather radar is a remote sensing instrument that mea-
sures the reflectivity of precipitation at a given altitude.
Those measurements can be used to estimate precipitation
at ground level. Several sources of errors affect the accu-
racy of this estimation (e.g.,Wilson and Brandes, 1979; Joss
and Waldvogel, 1990; Germann et al., 2006; Ciach et al.,
2007). The measure of reflectivity itself can suffer from elec-
tronic miscalibration, contamination by non-meteorological
echoes or range effect (attenuation, increase of the sample
volume due to beam broadening). When retrieving the rain-
fall estimation at ground level, additional uncertainties arise.
Those are due to the non-uniform vertical profile of reflec-
tivity (VPR) and the conversion of radar reflectivity into rain
rates (Z-R relationship). Nevertheless, a weather radar pro-
vides precipitation estimation at high spatial and temporal
resolution over a large area. A network of rain gauges can
provide more accurate point-wise measurements but the spa-
tial representativity is limited. The two observation systems
are generally seen as complementary and it is interesting to
combine them.

Merging radar and gauge observations has been an in-
tense topic of research since the beginning of the op-
erational use of weather radars in the 70’s. A review
of gauge adjustment methods and operational use in Eu-
rope can be found in a COST 717 report (Gjertsen et al.,
2003). More complex methods have been proposed such
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as co-kriging (Krajewski, 1987; Sun et al., 2000), statistical
objective analysis (Pereira et al., 1998) or Kalman filtering
approach (e.g.,Todini, 2001; Seo and Breidenbach, 2002;
Chumchean et al., 2006). Some of those methods are very
time consuming and are not well suited in an operational con-
text. Note that those merging methods must be seen as a final
step in the processing of radar data. All kinds of corrections
should be applied first to improve the radar-based precipita-
tion estimates like ground echo elimination, VPR correction
or attenuation correction (e.g.,Germann et al., 2006; Tabary,
2007; Uijlenhoet and Berne, 2008).

The aim of this study is to perform a long-term verifica-
tion of different existing merging methods. Several meth-
ods of various degrees of complexity have been implemented
and tested. All selected methods are appropriate for oper-
ational use. Verification of the merging methods faces the
problem that the real precipitation field is unknown. A tra-
ditional approach is to compare precipitation estimates with
rain gauges. Cross-validation (i.e. removing a gauge from
the adjustment network to use it for verification) is a pos-
sible method but the drawback is that the network used for
adjustment varies. In this study an independent verification
network is used, more suitable to analyse the performance of
the methods. Since the time sampling of this network is 24 h,
the merging is made on daily accumulations. Several statis-
tics are then computed to evaluate and compare the different
methods. Similar long-term verification has been performed
in recent studies but limited to one (e.g.,Borga et al., 2002;
Holleman, 2007) or a few methods (e.g.,Cole and Moore,
2008; Heistermann et al., 2008; Salek and Novak, 2008). In
Schuurmans et al.(2007), three different geostatistical meth-
ods have been compared based on 74 selected rainfall events.

The impact of the gauge network density on the merging
methods performance has been little assessed in past studies
(Sokol, 2003; Chumchean et al., 2006). One of the contribu-
tions of this paper is to determine the best method for a given
network density.

The characteristics of the radar and the rain gauge net-
works can be found in Sect.2. The different methods used
for merging are described in Sect.3 and the results of a 4-
year verification against rain gauges are presented in Sect.4.
In Sect.5, a sensitivity analysis to the density of the network
used for merging is carried out.

2 Radar and gauge observations

The Royal Meteorological Institute of Belgium (RMI) op-
erates a single-polarisation C-band weather radar. It is lo-
cated in Wideumont at 592 m above sea level. The radar ob-
servations are routinely used at RMI for operational short-
term precipitation forecast, detection of severe thunder-
storms (Delobbe and Holleman, 2006) and a posteriori anal-
ysis in the case of severe weather events. The use of the
Wideumont radar observations for hydrological studies and

applications is also an important field of research and de-
velopment (e.g.,Berne et al., 2005; Delobbe et al., 2006;
Leclercq et al., 2008).

The radar performs a 5-elevation scan every 5 min with re-
flectivity measurements up to 240 km. The beam width is 1
degree. The resolution of the radar polar data is 250 m in
range and 1 degree in azimuth. A time-domain Doppler fil-
tering is applied for ground clutter removal. An additional
treatment, based on a static clutter map, is applied to the vol-
ume reflectivity file to eliminate residual permanent ground
clutter caused by some surrounding hills. A pseudo-CAPPI
at 1500 m above sea level is extracted from the 5-elevation
scan (0.3, 0.9, 1.8, 3.3 and 6◦) on a Cartesian grid with a
resolution of 600×600 m2. The height of the pseudo-CAPPI
is chosen to limit the effect of ground clutter. Reflectivity
factors are then converted into precipitation rates using the
Marshall-Palmer relationZ=aRb with a=200 andb=1.6.
The 5 min images are integrated in time to produce a 24 h
rainfall accumulation starting at 08:00 LT.

The hydrological service of the Walloon region (SPW) op-
erates a dense (1 gauge per 135 km2) and integrated network
of 90 telemetric rain gauges. Most of them are tipping bucket
systems providing hourly rainfall accumulations. The col-
lected data are used for hydrological modelling and directly
sent to RMI. The rain gauges are controlled on site every
three months and in a specialised workshop every year. Ev-
ery day, a quality control of the data is performed by RMI
using a comparison with neighbouring stations. Radar data
are also used in this quality control for the elimination of
outliers.

RMI maintains also a climatological network including
270 stations with daily measurements of precipitation accu-
mulation between 8 and 8 local time (LT). These stations are
manual and the data are generally available with a significant
delay. The data undergo a drastic quality control. This net-
work is routinely used for the long-term verification of radar
precipitation estimates. It will be used here to evaluate the
radar-gauge merging methods.

Since the estimation of precipitation can be very inaccu-
rate at large distance from the radar, a maximum range of
120 km is used. The SPW network, used for adjustment, is
then reduced to 74 gauges. Several stations of the RMI net-
work are not always available during the 4-year verification
period. Those stations are removed to ensure that the same
network is used for the whole period. The remaining veri-
fication network includes 110 gauges. The positions of the
radar and the two rain gauge networks can be seen in Fig.1.
The topography of the area of interest is shown in Fig.2.

3 Description of the methods

Various methods combining radar and rain gauge data have
been implemented to obtain the best estimation of precipi-
tation. Several methods require the comparison between a
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Fig. 1. Walloon Region with Wideumont radar (black square), SPW
telemetric gauge network and RMI climatological gauge network.

rain gauge measurementG and a corresponding radar value
R. The spatial sampling issue is of crucial importance when
radar areal estimates are compared or combined with gauge
point measurements (Villarini et al., 2008). In our study,
the average over 9 radar pixels around the gauge location
is used as the corresponding radar precipitation estimation.
This allows limiting the effect of wind drift which can be
very significant (Lack and Fox, 2007). Spatial sampling er-
ror increases when the radar estimate is based on a larger
number of pixels especially in convective situation. However
this effect decreases with increasing accumulation time and
is therefore relatively limited at a daily time scale. Besides,
the use of a larger radar estimation area allows reducing the
temporal sampling error.

Only the pairs for which bothR andG exceed 1 mm are
considered as valid. A day is valid if there are at least 10
valid pairs. The methods are applied on a square domain
containing the Walloon region. It means that some areas fall
outside the network convex hull (i.e. the boundary of the min-
imal convex set containing all the gauges). On those areas,
adjusted values must be seen as extrapolation. The uncer-
tainties associated with those values are then higher.

3.1 Mean field bias correction (MFB)

The assumption here is that the radar estimates are affected
by a uniform multiplicative error. This error can be due for
example to a bad electronic calibration or an erroneous co-
efficienta in the Z-R relationship. The adjustment factor is
estimated as a mean field bias:

CMFB =

∑N
i=1 Gi∑N
i=1 Ri

(1)

whereN is the number of valid radar-gauge pairs,Gi andRi

are the gauge and radar values associated with gaugei.

Fig. 2. Topography of the Walloon region.

3.2 Range-dependent adjustment (RDA)

This method assumes that theR/G ratio is a function of
the distance from the radar. Range dependences are essen-
tially produced by the increasing height of the measurements,
beam broadening and attenuation effects. The range depen-
dent adjustment is mainly based on the BALTEX adjustment
method (Michelson et al., 2000). The relation betweenR/G
expressed in log-scale and range is approximated by a second
order polynomial whose coefficients are determined using a
least squares fit.

logCRDA = ar2
+ br + c (2)

wherer is the distance from the radar. The range dependent
multiplicative factorCRDA is derived from the polynomial fit.

3.3 Static local bias correction and range dependent adjust-
ment (SRD)

The static local bias correction aims at correcting for visibil-
ity effects. The correction is calculated from a one-year data
set using the climatological gauge network. The 24 h radar
accumulations are first adjusted by a mean field bias correc-
tion. Then, for each gauge location, the averaged residual
bias over 1 year is estimated. Finally a spatial interpolation
based on kriging is performed to obtain the correction field.
To simulate an operational context, the correction calculated
over a given year is used for the next year. The fields ob-
tained for 2004, 2005 (see Fig.3), 2006 and 2007 are very
similar. This correction is applied before a range dependent
adjustment (Slb+RDa=SRD).

3.4 Brandes spatial adjustment (BRA)

This spatial method was proposed byBrandes(1975). A cor-
rection factor is calculated at each rain gauge site. All the
factors are then interpolated on the whole radar field. This
method follows the Barnes objective analysis scheme based
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Fig. 3. Static local bias correction field (in dB) for the year 2005
with gauges (triangles) and radar (square) locations.

on a negative exponential weighting to produce the calibra-
tion field:

CBRA =

∑N
i=1 wi (Gi/Ri)∑N

i=1 wi

wi = exp
−d2

i

k
(3)

wheredi is the distance between the grid point and the gauge
i. The parameterk controls the degree of smoothing in the
Brandes method. It is assumed constant over the whole do-
main. The parameterk is computed as a function of the mean
densityδ of the network, given by the number of gauges di-
vided by the total area. A simple inverse relation has been
chosen:

k = (2δ)−1 (4)

The factor 2 was adjusted to get an optimalk for the full net-
work. The optimalk was estimated by trial and error based
on the verification for the year 2006. The same relation be-
tweenk andδ is used for the reduced networks (see Sect.5).

3.5 Ordinary kriging (KRI)

A geostatistical method like ordinary kriging deals with the
spatial interpolation of a random field from observations
at several locations. A general description is presented in
Goovaerts(1997). This method requires the definition of a
variogram characterising the spatial variability of the precip-
itation field. The estimationU0 at a specific location is a
linear combination of the gauge valuesGi :

U0 =

N∑
i=1

λiGi (5)

The weightsλi are computed to obtain the best linear unbi-
ased estimator assuming a constant unknown mean across the
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Fig. 4. Mean absolute error of all radar-gauge merging methods.

field. This involves solving a linear equation system whose
size is equal to the number of gauges.

In this study, only the 20 nearest gauges are used. This
allows reducing the computational cost with little loss of ac-
curacy. The model variogram, assumed isotropic, is a first
order linear function of the distance. More complex climato-
logical variograms (i.e. Gaussian, exponential and spherical)
have been tested but no significant improvements of the per-
formance were observed. Those results are consistent with
the study ofHaberlandt(2007). The KRI method, based only
on rain gauges, is used to evaluate the added value of radar
observations in the other methods.

3.6 Kriging with radar-based error correction (KRE)

This method referenced as “conditional merging” inSinclair
and Pegram(2005) uses the radar field to estimate the error
associated with the ordinary kriging method based on rain
gauges and to correct it. First, radar values at each gauge
site are used to produce a radar-based kriging field. This
field is then subtracted from the original radar field to obtain
an error field. Finally, the error field is added to the gauge-
based kriging field. The KRE method is relatively simple and
computationally efficient.

3.7 Kriging with external drift (KED)

This method is a non-stationary geostatistical method that
uses the radar as auxiliary information. A general description
is given inWackernagel(2003). It follows the same scheme
as the ordinary kriging except that the mean of the estimated
precipitation field is now considered as a linear function of
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Fig. 5. Mean absolute error of all methods based on a 4-year verifi-
cation.

the radar field. Additional constraints are then added to this
scheme:

N∑
i=1

λiRi = R0 (6)

whereRi is the radar value at gauge locationi, λi the cor-
responding weight andR0 the radar value at the estimation
location. The weights are given by solving the augmented
system of linear equations. The variogram is also assumed
linear and isotropic. This is the most complex and time con-
suming method. Note that an automatic method to compute
a variogram model has been proposed recently byVelasco-
Forero et al.(2008).

4 Long-term verification

4.1 Methodology

The performance of the radar-gauge merging methods has
been evaluated by comparing the adjusted 24-h precipita-
tion accumulationsR to the measurements of the climato-
logical gauge networkG. The testing period extends from
2005 to 2008, which includes 612 valid days. The gauge
data used for the adjustment and for the verification are in-
dependent. Unfortunately the two networks have several lo-
cations in common or very close. The gauges of the RMI
network situated at a distance less than 2 km from a gauge of
the SPW network are then removed. The remaining verifica-
tion network includes 75 gauges.

Several quality parameters are found in the literature. The
Root Mean Square Error:

RMSE=

√∑N
i=1(Ri−Gi)2

N
(7)

−2 −1.5 −1 −0.5 0 0.5 1 1.510

20

30

40

50

60

70

80

90
WID 24h R/G −− ERROR DISTRIBUTION 2005−2008

R/G ratio [dB]

Cu
m

ul
at

ive
 ra

in
fa

ll [
%

]

 

 

ORI
MFB
RDA
SRD
BRA
KRI
KRE
KED

Fig. 6. Error distribution based on a 4-year verification. The scatter
score for one method is half the distance between the 2 intersections
of the curve with the 2 red lines.

is the most common parameter used in verification studies.
However, the Mean Absolute Error:

MAE=

∑N
i=1 |Ri−Gi |

N
(8)

is less sensitive to large errors and it is used here as first qual-
ity parameter. All pairs of gauge radar values are taken into
account for these parameters.

A standard for objective judgement of radar performance
is proposed inGermann et al.(2006). The mean bias, the
error distribution and the scatter as defined in that paper are
also used in the present study. The mean bias (MB) is the
total precipitation as seen by the radar divided by the total
precipitation measured by the gauges. The error distribution
is the cumulative contribution to total rainfall as a function of
the R-G ratio expressed in dB. The scatter is half the distance
between the 16% and 84% percentiles of the error distribu-
tion. It is a robust measure of the spread of the multiplicative
error, insensitive to outliers. The standard deviation of the
multiplicative error (STD) and the root mean square factor:

RMSF(dB)=

√√√√∑N
i=1

(
10 log Ri

Gi

)2

N
(9)

have also been calculated. Only pairs with both adjusted and
gauge values larger than 1 mm for all the methods are taken
into account. This ensures that the same data set is used for
comparison between the different methods.

4.2 Results

The verification methodology has been first applied for the
four years separately. The goal is to verify the consistency of

www.hydrol-earth-syst-sci.net/13/195/2009/ Hydrol. Earth Syst. Sci., 13, 195–203, 2009



200 E. Goudenhoofdt and L. Delobbe: Evaluation of radar-gauge merging methods for QPE

ORI MFB RDA SRD BRA KRI KRE KED0

0.5

1

1.5

2

2.5

methods

SC
AT

TE
R 

(d
B)

WID 24H R/G SCATTER (dB) −− 2005−2008 (612 days )

Fig. 7. Scatter score for all methods based on a 4-year verification.

the results between the four datasets. As illustrated in Fig.4,
the relative performance of the different methods is similar
for the four years. Nevertheless, the ordinary kriging method
(KRI), using only rain gauges, exhibits some variability be-
tween the years. The 4 years taken as a whole will now be
considered for the rest of the evaluation.

As shown in Fig.5, the Mean Absolute Error (MAE) of all
methods is significantly reduced compared to the MAE of the
original radar data (ORI). A simple mean field bias (MFB)
correction reduces the error by about 25%. Using the range
dependent adjustment (RDA) allows a small additional im-
provement. A further improvement is obtained when a static
local bias (SRD) correction is applied. The performance of
the latter method is close to the Brandes one (BRA), which
is also a spatial method. The ordinary kriging method (KRI),
only based on rain gauge data, shows a result close to the
RDA method. This good result is due to the high density
of the rain gauge network (see Sect.5). The two geostatis-
tical methods using both radar and rain gauge observations
(KRE, KED) perform best for this quality parameter. When
the KED method is used, the error decreases by almost 40%
with respect to the original data.

Figure 6 shows the error distribution for the different
methods. The vertical line divides theR/G ratios (in dB) in
underestimation (left) and overestimation (right). A perfect
match should give a step function, with a mean bias and a
scatter equal to zero. The original radar data (ORI) reveal a
significant underestimation with a mean bias of−1.2 dB. The
mean field bias correction (MFB) succeeds in balancing the
error distribution. The method combining a range-dependent
adjustment and a static local bias correction (SRD) slightly
reduces the spread of the error while the most sophisticated
geostatistical method (KED) further tightens the error distri-
bution. The ordinary kriging (KRI) shows a small underesti-
mation.
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Fig. 8. Mean Absolute Error of all methods computed for each
month and normalised by the Mean Absolute Error of the original
radar data.

The results for the scatter (Fig.7) are similar to the re-
sults for the MAE. It is worth pointing out that the relative
performance of Brandes compared to the other methods is
slightly better. Actually this method can sometimes lead to
large errors that are taken into account for the MAE but not
for the scatter. This figure also shows that methods with a
daily spatial correction feature based on radar and gauges
(BRA, KRE, KED) perform significantly better.

The values of the different statistics for all the methods
can be found in Table1. It appears that the ranking of the
methods is very similar for the different scores.

4.3 Seasonal variation

The spatial pattern of 24 h rainfall accumulation varies sig-
nificantly along a year, from widespread precipitation during
stratiform events in winter to very local precipitation cells
during convective events in summer. Therefore the accuracy
of radar precipitation estimates and the spatial representativ-
ity of gauge measurements depend on the season.

Figure8 shows the value of the MAE (normalised by the
MAE of the radar) with the data set sorted by month. The
ranking of the methods slightly varies along the year. As
expected, the estimation from the gauges only (KRI) is rel-
atively inaccurate in the summer. It is outperformed by the
mean field bias correction in this period. In the winter, the
ordinary kriging (KRI) is better and very close to the kriging
with external drift (KED), which is the best method for all
months. This analysis points out that the additional informa-
tion given by the radar is especially valuable during summer,
when convective events prevail.
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4.4 Range-dependence

The performance of the different algorithms as a function of
range is analysed up to 120 km from the radar. The study area
is divided into 6 range intervals of 20 km as shown in Fig.9.
The gap between the performance of the radar and that of
the gauges is significant at short distance (<20 km) due to
the bright band effect. This is also the case at long distance
(>100 km) due to the decreasing accuracy of radar estimates.
The small difference between KRI and KRE or KED at those
ranges shows that the radar added value is very limited. The
positive effect of the range dependent adjustment when com-
pared to the mean field bias appears at distances further than
80 km. KED is the best method for all distances. Seasonal
variation of the range dependence may exists and a prelimi-
nary analysis of this effect has been performed. A significant
variability between the years has been found and no robust
conclusions could be reached.

5 Effect of the network density

The effect of gauge density on the performance of the dif-
ferent merging methods has been analysed. This is useful to
select the most appropriate method for a given network den-
sity or to determine the minimum network density needed to
achieve a given level of performance. None of the methods
takes directly into account the density of the network except
the Brandes method where an inverse relation is used to de-
termine the smoothing factork (see Sect.3).

Table 1. Several statistics (see Sect.4.1) for the 4-year verification
of radar-gauge merging methods.

MB RMSE RMSF MAE Scatter STD
(dB) (mm) (dB) (mm) (dB) (dB)

ORI −0.998 5.338 2.649 2.410 2.236 2.480
MFB 0.039 4.066 1.829 1.812 1.520 1.814
RDA −0.070 4.129 1.741 1.735 1.480 1.738
SRD −0.052 3.957 1.672 1.652 1.378 1.670
BRA 0.073 3.881 1.680 1.592 1.240 1.670
KRI −0.153 3.958 1.833 1.685 1.380 1.833
KRE −0.053 3.533 1.653 1.517 1.209 1.652
KED −0.061 3.498 1.618 1.485 1.186 1.616

5.1 Removing gauges

As the region seen by the radar is characterised by low cli-
matological variations, the assumption that the probability of
precipitation is the same everywhere is valid. Consequently,
a perfect network should be made of a regular grid of points
considering a rectangular area. Actually the position of the
gauges depends on practical constraints and specific interest
on catchment. The spatial distribution of gauges in a real net-
work is then less uniform. It is obvious that gauges cannot be
randomly removed from the network. Indeed, when the fur-
thest gauge is removed, the coverage area decreases. Further-
more, a gauge that belongs to the convex hull (see Sect.3)
cannot be removed without decreasing the study area. A rain
gauge must be removed from the network in such a way that
the spatial distribution of the remaining gauges is as uniform
as possible. A simple approach is proposed here, based on
the distance between gauges. For each gauge, the sum of
the inverse of the distance to the four nearest gauges is com-
puted. Then the gauge with the maximum value (that is too
close to its neighbours) is removed. The effect of the algo-
rithm can be seen in Fig.10 which shows the reduced net-
works of 50 and 20 gauges. Note that the convex hull is rela-
tively well preserved while the number of gauges decreases.

5.2 Global statistics

A long term verification is performed with decreasing net-
work densities. For the sake of consistency, the valid days
for adjustment (see Sect.3) at the lower density are taken as
the common verification dataset for all densities.

Figure11 shows that a mean field bias correction is not
very sensitive to the gauge density and the performance re-
mains acceptable even for a low density network. The perfor-
mance of the range dependent adjustment, involving a second
order polynomial fit, slightly increases with density but only
for low densities. As expected, the ordinary kriging (KRI) is
the most sensitive method to this parameter. Indeed, the error
significantly grows when the density decreases. The MAEs
of the Brandes (BRA) and the two geostatistical merging
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Fig. 10. Gauge network of decreasing densities obtained by an al-
gorithm for removing gauges.

methods (KED, KRE) follow the same tendency but with a
lower sensitivity. KED is the best method for all network
densities. However, for the lowest tested density (1 gauge per
500 km2), the static local bias followed by a range dependent
adjustment (SRD) performs as well as the most sophisticated
methods (KRE and KED). Similar results have been obtained
with the other quality parameters.

6 Conclusions

Various methods combining rainfall estimations from a C-
band weather radar and an automatic rain gauge network
have been implemented. A 4-year verification up to 120 km
range was carried out against an independent gauge network
of daily measurements. Several statistics have been com-
puted to evaluate the performance of the radar-gauge merg-
ing methods. The effect of the network density has also been
tested.

The results point out that simple methods like mean field
bias correction can significantly reduce the error of the radar
estimation. Nevertheless, there is a clear benefit of using a
spatial correction factor. Based upon our verification study,
the best method is the kriging with external drift which
makes use of the radar as secondary information to improve
the spatial interpolation of gauges values. The kriging with
radar-based error correction shows very similar performance
while the computational cost is reduced. A seasonal verifica-
tion shows interesting results. In the winter, when stratiform
widespread precipitation prevails, the ordinary kriging based
on gauges performs as well as the best radar-gauge merging
method. In the summer, when convective events occur, the
added value of radar observation is very clear. The sensitivity
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Fig. 11. Mean absolute error of the merging methods for different
network densities from 1 gauge per 500 km2(N=20) to 1 gauge per
135 km2 (N=74).

analysis to the gauge network density shows that the geosta-
tistical merging methods perform best for all tested densities.
Furthermore, their relative benefit increases with the density.
A method combining a static local bias correction and a range
dependent adjustment is less sensitive to the gauge density.
For the lowest tested network density (1 gauge per 500 km2),
this method is as efficient as the most sophisticated merging
methods.
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