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1 Introduction

This paper deals with the HYDROMAX real-time riverflow
prediction system which has been developped by CESAME
(Belgium) and is in permanent operation from 1995. HYDRO-
MAX is based on a lumped grey-box rainfall-runoff model
that requires only on-line rainfall and flow measurements in
order to compute the riverflow predictions (Dalcin et al. 2003).

The goal of the paper is to give a systematic comparison of
the HYDROMAX performance when alternative estimations
of the average rainfall over a river basin are used as model in-
puts : estimations from pointwise rain-gauge measurements,
estimations from raw weather radar measurements and esti-
mations obtained by combining both measurement systems
using geostatistical methods.

The analysis relies on application results on two river basins,
tributaries of the Meuse river, in the Walloon part of Belgium
(see Fig. 1) : the Ourthe catchment at Tabreux (1608 square ki-
lometers) and the Semois catchment at Membre (1229 square
kilometers). The rain-gauge measurements are given by an au-
tomatic network operated in real-time by MET/DVGH. The
radar measurements are provided by the Royal Meteorologi-
cal Institute (RMI) of Belgium, which operates a C-band ra-
dar, located in Wideumont in the south of Belgium.
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Fig. 1. Ourthe (top area) and Semois (bottom area) watersheds. Rain
gauge covering the basins are represented by stars. The Wideumont
radar is also represented.

2 Rainfall-runoff model

As mentionned before, the rainfall-runoff model is a lumped
grey-box model. The input of the model is the hourly mean
areal rainfall over the considered river basinΩ ⊂ R2.

PB(k) =
1
|Ω|

∫
Ω

P (u, k)du (1)

whereP (u, k) is the hourly rainfall depth at locationu ∈ R2

during hour indexed byk. The model is then decomposed in
two parts.

The first one is a deterministic non-linear function which com-
putes the effective rainfallPN(k), defined as the fraction of
PB(k) which runs off directly towards the river and contri-



Fig. 2. Conceptual scheme of the effective rainfall production func-
tion

butes thus to the increase of the river flow.

PN(k) = PB(k)− E1(k)−W (k) (2)

whereE1(k) denotes the part ofPB(k) which directly eva-
porates during the hourk andW (k) represents the amount of
water which is stored in the basin under various forms : vege-
tation interception, superficial depressions, soil moisture.

The watershed is seen as a water reservoir (see figure 2). The
state model describing the evolution of the storage of the water
S(k) in the basin is :

S(k) = S(k − 1) + W (k)− I(k)− E2(k) (3)

whereI(k) is the amount of water drained by percolation and
E2(k) is the part of water which evapotranspirates during hour
k. PercolationI(k) is represented by a linear function of the
available stock :

I(k) = α (S(k − 1) + W (k)) (4)

whereα is a specific percolation parameter. The evapotrans-
piration terms are :

E1(k) = min(PB(k), ETP (k)) (5)

E2(k) = max(0,min(ETP (k)− PB(k), S(k − 1) +
W (k)− I(k))) (6)

whereETP (k) is an estimate of the seasonal potential eva-
potranspiration for the considered basin. We further assume
that the basin stock has an upper limit, denotedSmax. The
last term,W (k), is represented by :

W (k) = (Smax−S(k−1))
(

1− exp
(
−β

PB(k)− E1(k)
Smax − S(k − 1)

))
(7)

This ensures that the stockS(k) is comprised between0 and
Smax and that the effective rainfallPN(k) increases when
PB(k) and/orS(k) increase. The three considered parame-
ters (α, β andSmax) are positive parameters. In addition,β
needs to be lower or equal to1 in order to ensure thatPN(k)

is positive. It is clear that these three parameters are different
for each river basin. They must thus be calibrated with expe-
rimental data for each watershed.

The second part of the model is a stochastic linear model
(ARX type). At time stepk, it computes a flow prediction
Q̂(k + h), with h the prediction horizon, as a linear combina-
tion of present and past river flow measurements and effective
rainfall values available at timek.

Q̂(k+h) =
na∑
i=1

aiQ(k−(i−1)h)+
nb∑

j=1

bjPNh(k−(j−1)h)

(8)
whereQ(k−(i−1)h) is the flow measure at timek−(i−1)h
andPNh(k−(j−1)h) represents the effective rain cumulated
overh time steps fromk − jh + 1 to k − (j − 1)h. The di-
mensionsna, nb and the parametersai andbj are determined
by using standard identification methods. It should be noted
that the prediction horizon must be smaller than the natural
response time of the river basin.

3 Rainfall measurements systems

To run the model described above, we need to have the in-
put PB(k) at each time step. But this signal is not directly
available. We need to estimate it from rainfall measurements
provided by a rain gauge network or by a weather radar.

Rain gauges provide accurate pointwise measures of the pre-
cipitation field. Unfortunately rain gauges are usually quite
scattered in an area of the size of a watershed. For the two
basins we studied, we had one rain gauge for176 km2 and
for 179 km2. This low density may prevent from detecting
correctly the spatial variability of the precipitation field (see
figure 3). In this study, rain gauge measurements are provided
by an automatic network operated in real-time by MET/DVGH
which gives cumulated hourly precipitation data.

Fig. 3. Semois watershed at Membre : hourly radar rainfall (in
[mm/h]) in grey and values at several rain gauge (1/5/2002 at 21 pm).



Weather radars are able to detect precipitation and to provide
rainfall estimates. The main asset of this device is the spa-
tial and temporal resolution it allows. Indeed, the Wideumont
weather radar, operated by RMI, gives measurements every
five minutes with a spatial resolution of less than one square
kilometer. We can thus obtain a good measure of the precipi-
tation field spatial variabilty. However, quantitative measures
provided by the radar may be rather bad since they are affec-
ted by a lot of error sources whose the main one is the non-
uniformity of the vertical profile of reflectivity.

Both measurement systems seem to have complementary ad-
vantages. Combining them should produce better precipitation
estimates. A comparison between different merging methods
to estimate 24h pointwise precipitation accumulation is pre-
sented in Delobbe et al. 2008.

4 Results

Two river basins are used to compare our methods : the Ourthe
catchment at Tabreux (1608 square kilometers) and the Se-
mois catchment at Membre (1229 square kilometers). The consi-
dered identification period is twenty months long, from 1st
May 2002 to 31st December 2003. The same period is used for
the comparison of methods. To generate hourly radar data ac-
cumulations, we simply sum all five-minutes radar data images
over one hour.

We are mainly interested in comparing the flow prediction ac-
curacy obtained with two different mean areal rainfall estima-
tors. The first one is the ordinary kriging estimator,PBOK ,
which is based on rain gauge measurements only. Ordinary
kriging is a geostatistical method which gives an optimal un-
biased estimator. It is assumed that the rainfall (random) field
is homogeneous (spatially stationnary). The HYDROMAX real-
time riverflow prediction system has used this estimator from
1995. The second estimator,PBRR, is simply obtained by
averaging the raw radar data over the whole watershed.

Figure 4 gives an example showing that both mean areal rain-
fall estimators may give very different results. The two es-
timations are clearly quantitatively different with an obvious
underestimation of the mean areal rainfall from the radar data.

The criterion we use to identify the flow prediction model
parameters and compare the precision of flow predictions is
the mean square error,MSE = 1

K

∑K
k=1(Q(k) − Q̂(k))2

whereK is the number of time steps we use for the compari-
son (14638 hours in our analysis).

The identification has been carried out for each of these two
methods and for each river basin. Figure 5 shows the criterion
MSE in function of the number of parameters in the ARX mo-
del for both methods and for both watersheds. Although the
estimates may be rather different (Fig. 4), we see that rain
gauge estimators (OK) and raw radar estimators (RR) give a
similar prediction accuracy, whatever the numberN of pa-

Fig. 4. Mean areal rainfall (inmm) estimated by the radar (dark
gray bars) and by 14 rain gauges (light gray bars), for the Ourthe
watershed at tabreux, from4th May 2002 to6th May 2002. The
continous black line represents the measured river flow (inm3/s).

Fig. 5. Semois (top) and Ourthe (bottom) watersheds : mean square
error (MSE) of flow prediction in function of the numberN of model
ARX parameters, for the raw radar (RR) input and the rain gauge
estimator (OK).

rameters. For the Semois river basin, raw radar predictions
are a bit less precise than rain gauge predictions while for the
Ourthe catchment, they are slightly better (the MSE values
can be found in table 1).

The fact that the bias which affects the raw radar measure-
ments has a negligible impact on the accuracy of the river flow
predictions can be explained as follows. During flood periods,
the rainfall-runoff system can be considered as being almost
linear and the flow prediction model approximately reduces



Table 1. Mean square error (MSE) of the flow prediction for dif-
ferent model input estimators.

Mean square error MSE(m3/s)2

Model input Ourthe (Tabreux) Semois (Membre)
OK 2.542 4.346
RR 2.490 4.583

to :

Q̂(k +1) =
na∑
i=1

aiQ(k− i+1)+
nb∑

j=1

bjPBt(k− j +1) (9)

The parametersai and bi are estimated by minimizing the
MSE from experimental data ofQ(k) and the areal rainfall
estimatesPBOK andPBRR obtained from rain gauge and ra-
dar measures respectively (for each choice of the dimensions
na andnb).

Assuming that the raw radar mean areal rainfall is biased by
a factor "b" : "PBR(k) = bPBt(k)", it is clear that a li-
near least square estimation will produce the same predictions
"Q̂(k+1)" with both sets of data (obviously with the parame-
ter bi scaled by the bias factor "b").

Furthermore, by artificially varying the biasb between0.2 and
8 for the twenty months identification period, we see in Fig.
6 that the prediction accuracy is nearly not affected by factor
b. The same effect is observed for the Semois watershed. It is
due to the adaptation of the parameters of the non linear part
of the model which are identified separately for each different
value ofb (see Leclercq et al. 2008 for further details).

Fig. 6. Mean square error (MSE) of flow prediction for the Ourthe
catchment in function of the artificial biasb.

Another interesting fact is that the correlation between both
mean areal rainfall estimators (see Leclercq et al. 2008) is
much higher and less noisy than the correlation between the
pointwise precipitation measures (see table 2).

We also compared the flow predictions when using a few mer-
ging methods which combine radar and rain gauge measure-

Table 2. First row : correlation coefficients between pointwise radar
and rain gauge data (for both basins). Second row : correlation coef-
ficients between mean areal radar (PBRR) and rain gauge (PBGG)
estimators (for both basins)

correlation coefficient
Type Ourthe

(Tabreux)
Semois
(Membre)

pointwise 0.70 0.73
mean areal 0.84 0.83

ments. For the identified period and for both basins, we did
not find any significant improvement by using one merging
method or another.

5 Conclusion

Two mean areal rainfall estimators (one from rain gauge mea-
surements only, one from raw radar data) were compared in
their ability to yield accurate river flow predictions. It turns out
that the flow predictions are almost not affected by the mea-
surement bias which is known to be significative for raw radar
measurements. This is due to the adaptation of the model para-
meters which are identified separately for each estimation me-
thod. We show that the predictions obtained with both types
of measurements have the same level of accuracy despite the
fact that quantitative radar measurements are much less accu-
rate than rain gauge measurements. It is also shown that the
lumped grey box rainfall-runoff model we use is unable to
take advantage of the better mean areal rainfall estimates gi-
ven by merging radar and rain gauge measurements.

However, these results need to be confirmed on a longer time
period including several flood episods and with a validation
period different from the identification period. Furthermore
the reader should be aware that the radar biasb is not constant
in time but may vary drastically from one day to another.
Maybe the good prediction results we obtain with raw radar
data are due to the fact that there are only two (resp. one) ma-
jor flood events occuring during the twenty months period in
the Semois (resp. Ourthe) watershed.
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