Statistical analysis of convective storms based on C-band radar observations

Edouard Goudenhoofdt, Maarten Reyniers and Laurent Delobbe **Royal Meteorological Institute of Belgium**

WMO Symposium on Nowcasting, 30 Aug-4 Sep 2009, Whistler, B.C., Canada

Contact : edouard.goudenhoofdt@oma.be Website : radar.meteo.be

Abstract

Several years of volume reflectivity measurements from a C-band weather radar are used to study the characteristics of convective storms observed in Belgium. These data are analysed with the TITAN cell tracker which has been recently installed at the Royal Meteorological Institute of Belgium (RMI).

First encouraging results are obtained from a 3-year dataset. The distribution of different storm properties such as duration, maximum reflectivity, echo-top heights are analysed. Statistics on the kinematics of the storms are shown. The influence of the diurnal and seasonal cycles is presented as well.

The final goal of this study is to analyse the relation between storm evolution and some relevant parameters with the aim of improving convective storms nowcasting.

Titan cell tracker

The cell tracker TITAN (Dixon and Wiener, 1993) is designed to identify and track convective cells from radar observations.

The radar polar data are first interpolated on a Cartesian grid using nearest neighbour principle.

TITAN is in constant development and it has been updated several times.

Storm track analysis

A side application of the TITAN system allows generating ASCII tables of storm track properties. Two categories of properties are produced :

- Instantaneous storm properties such as position, volume or echo-top.
- Aggregate track properties such as duration, mean/max value of instantaneous properties.

The tracks are sorted categories :

- simple track : for individual ce
- complex track : when splitting merging occurs properties are ag amongst all cells

Radar observations

RMI operates a weather radar in South-East Belgium :

- Antenna height : 592 m above sea level
- C-band (5 Ghz), single-pol, Doppler
- Detection range : 240 km
- Resolution : 250 m in range, 1° in azimuth and elevation
- 5-elevation scan every 5 minutes
- Doppler filtering of ground clutter

Storm identification :

- A storm is identified as a 3D region exceeding a given reflectivity threshold (35 dBz)
- A higher dual threshold (45 dBz) is used inside the storm envelope to distinguish between different storm entities.

Storm tracking :

- Overlapping technique to match storm shape at two succesive scans.
- Remaining storms are logically matched by combinatorial optimisation.
- Additional handling of mergers and splits

l into two	Some parameters allow selecting a subset of the detected storms :	
ells	 The minimum duration is fixed at 900 sec which corresponds to 3 consecutive scans. 	
for track and/or s. The ggregated s.	• The quality of the radar observations decreases with the distance from the radar due to e.g. attenuation, overshooting or beam broadening. Storm tracks lying outside the range limit of 180 km are removed.	

1500

The effect of the diurnal cycle is clear : there is significant maximum between 12 and 16 UTC.

Conclusions and perspectives

A 3 year dataset from a C-band radar has been analysed to get a better insight of the convective activity in Belgium. The capabilities of the tracking and analysis system TI-TAN have been showed. Promising reliminary results have been obained from this long-term dataset. Realistic empirical distributions of torms properties have been obained.

cknowledgements

Ve would like to thank Jaqueline Murakami Kokitsu (IP-Met, Brazil), Karel de Waal (South African Weather Serrice) and Mike Dixon (UCAR, U.S.A.) for their support oncerning the installation of TITAN. This research is suported by the Belgian Federal Science Policy.

Results

Storm tracks obtained from year 2006 to 2008 have been analysed. The frequency distribution of several properties of the storm tracks as well as spatial statistics have been obtained. The results for the different years are relatively similar (only 2008 is shown here).

Looking at the number of storm tracks detected for each month of the year, it appears that convective storms mainly occur between May and August.

Simple cells are mostly short lived while about half of the complex cells last more than 1 hour.

Plotted are the maximum reflectivity and the maximum height of the 35-dBZ threshold (echo-top 35 dBz). At first sight, both properties exhibit log-normal distributions.

(South-South-West).

More robust results will be obtained through :

- Improvement of ground clutter removal (e.g. static clutter map)
- Sensitivity study to the storm tracking parameters (e.g. reflectivity thresholds)
- Deeper analysis of the storm initiation density map

References

Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting–A Radar-based Methodology. J. Atmos. Oceanic Technol., 10, 785-797. Delobbe, L and I. Holleman, 2006: Uncertainties in radar echo top heights used for hail detection. Meteorol. Appl., 13, 361-374.

The mean displacement of the storms is consistent with the dominant wind recorded in the study area for convective situations

For the storm initiation, there is a clear effect of the range. The non uniform density suggests the existence of preferred areas for convection initiation.

1	Further research :	
L		

- Find possible relation between storm evolution and storm track properties
- Use a second radar to verify the results
- Use numerical weather prediction models output
- Use data from lightning detection or satellite imagery