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Abstract: The goal of this study is to investigate the impact of high-resolution SRTM and Corine
Land Cover on the number of cloud–ground lightning flashes and their spatial distribution simulated
by a numerical weather-prediction model. Two lightning episodes were selected: (1) over a non-
complex terrain and (2) over a complex terrain, the Alps. Significant discrepancies were found in
the geographical distribution of the land-cover classes and also in the topography between Corine
Land Cover and 30-arc seconds USGS. In general, the timing and the spatial distribution of Cloud-to-
Ground (CG) lightning by the model were well-represented when compared to the observations. In
general, more CG flashes were calculated by the simulation with USGS Land Cover and topography
than the simulation with Corine Land Cover and SRTM topography. It appears that the differences in
sensible and latent heat fluxes between the simulations were caused by the differences in land-cover
classes. Moreover, differences in the vertical wind speeds, specific humidity, temperature and the
convective available potential energy were found when compared to observations, resulting in the
differences in cloud–ground lightning flashes between the simulation with the SRTM topography
and Corine Land Cover and the simulation with the USGS Land Cover and topography. Using the
high-resolution land cover and topography data may help to reduce uncertainties in CG lightning
calculations by the model.

Keywords: WRF; Corine land cover; SRTM; USGS land cover; lightning flashes

1. Introduction

Climate change will impact the global mean temperatures, sea level, heat content of
the oceans and precipitation profiles, with a likely increase in the frequency and intensity
of precipitation episodes in Europe and North America [1]. Heavy precipitation episodes
or thunderstorms are often accompanied by hail and lightning activity. A study by [2]
showed that current climate models predict a 12 ± 5% increase per degree Celsius per
year and a 50% increase in lightning flashes across the United States by 2100 as a result of
global warming (RCP8.5 scenario). Meanwhile, [3] found, in general, a decrease of 15%
in total lightning flash rate in 2100, related to uncertainties in cloud ice and microphysics
processes. Industries, the service sector (e.g., hospitals, telecom and electricity power
supply networks), farms, aviation and urban areas (and individuals) are exposed to the
potential damages that lightning can cause. Moreover, wildfires are often initiated by
lightning [4–6], and lightning plays an important role in the production of atmospheric
nitrogen oxides [7], which contribute to the formation of tropospheric ozone [8]. The
convective available potential energy (CAPE; [9,10]), together with precipitation rates, is
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often used to estimate the potential of thunderstorms and lightning. Updrafts, down-
drafts and cloud microphysics play important roles in the build-up of electrical charges
in convective clouds (by the formation of ascending water droplets and collisions with
descending ice particles), causing a separation of electrical charges between the water
droplets and ice particles [11–13]. Recent studies investigated the sensitivity of different
dynamics in cloud formation and reduced the uncertainties of cloud microphysics [14–36],
planetary boundary layer (PBL) development [37–42], and many more. However, the
impact of land surface types and topography on meteorological variables and lightning
has received less attention and is therefore less understood. The accuracy of input land-use
classifications can affect simulated meteorological parameters, such as wind fields and tem-
perature near the surface [42]. A study by [43] evaluated the impact of the high-resolution
Shuttle Radar Topography Mission (SRTM) (90 × 90 m; Ref. [44]) and Corine Land Cover
(100 × 100 m; [45–47]) on simulated meteorological parameters in the Weather Research
Forecast model (WRF) [48,49] by comparing it with a simulation using the 30-arc seconds
USGS Land Cover and topography and comparing both simulations with observations.
That study showed large differences in the fraction of urban built-up areas between the
Corine Land Cover and USGS Land Cover, which impacted the calculated meteorological
parameters. For example, the simulation with the SRTM and Corine Land Cover resulted
in lower wind speeds and showed a better agreement with the observations. Moreover,
differences in precipitation quantities, temperature at 2 m, sensible and latent heat fluxes,
and the related PBL were found. A follow-up study by [50] investigated the impact of
the SRTM and Corine Land Cover on gas and PM10 calculations in WRF-Chem [51,52].
The authors found a better agreement with the observations for CO, NO, SO2 and PM10
concentrations over the Po Valley, due to the reduced wind speeds and differences in PBL
heights, when compared to the simulation with the USGS topography and land cover.
Therefore, improved simulations of meteorological variables (precipitation, vertical wind
profiles, temperature, heat fluxes, PBL development, cloud formation and dissipation) can
also reduce the uncertainties in the calculation of lightning. A study by [53] implemented
the calculations of lightning based on [54], which uses the cloud-top height and the vertical
updraft velocity via the cumulus parameterization scheme. The authors of Ref. [55] studied
10 different lightning episodes over Greece and found that WRF, in general, overestimates
the number of cloud-to-ground lightning flashes, mainly related to the calculations of the
cloud-top height in [54], the vertical velocity and CAPE values.

To the authors’ knowledge, the investigation of the impact of land-surface classes and
topography on lightning calculations has not yet been reported.

The goal of this study is to investigate the impact of high-resolution SRTM and Corine
Land Cover on the number of CG lightning flashes and their spatial distribution by WRF.
In order to investigate this, the simulations are compared with the results of the WRF
simulation using the standard 30-arc seconds United States Geological Survey (USGS) Land
Cover and topography [56], and both simulations are compared to lightning observations
(more information on the observations are given in Section 3). Two severe lightning
episodes are studied, one over Belgium on 18 August 2011 (causing fatalities during a
festival), and the second one over the Alps on 29 July 2013.

In order to improve CG lightning calculations by numerical weather-prediction mod-
els (NWP), it is important to reduce the uncertainties in the physics and dynamics that
contribute to the formation of convective clouds and lightning flashes. The present study is
intended to explore the importance of topography and land-cover classes in CG lightning
calculations, which may contribute to the improvement of the accuracy of CG lightning
flashes by the NWPs.

2. Methodology

In this work, the WRF model (version 4.2.2, National Center for Atmospheric Re-
search, Boulder, CO, USA) was used to investigate the impact of Corine Land Cover and
high-resolution SRTM topography on simulated lightning flashes. The lightning parame-
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terization used in the simulations was based on cloud top at 20 dBZ [54] (in WRF name
list, lightning_option = 2). The updraft intensity, which is directly related to the lightning
activity, is strongly correlated with cloud-top height. Processes that play an important
role in the occurrence to lightning are microphysics, air pollution (acting as cloud con-
densation nuclei, impacting cloud droplet number), ice/graupel phase, latent heat fluxes
and updraft [11]. In Section 2.1, more details on the WRF model are given. The model
was applied on a 4 × 4 km resolution and with no nudging to the measurements of the
meteorological stations. To investigate the importance of land-cover classes on lightning
calculations, a severe weather lightning episode over a non-complex terrain was selected.
On 18 August 2011 (Case I), a thunderstorm with lightning passed over the relatively flat
terrain of Belgium, moving northeast towards Germany. Three simulations were performed,
the first one with the USGS 30-arc seconds land-use data (~1 × 1 km) and GTOP 30-arc
seconds topography data. The second one was performed with Corine Land Cover data
only. The third one was performed with Corine Land Cover and SRTM topography.

Another episode (Case II) took place on 29 July 2013, when high lightning activity was
observed over the complex terrain of the Alps. This episode helps us to investigate the
effect of topography (surface elevation) on lightning calculations in WRF. Similar to Case I,
we ran three simulations, one with USGS default land use and topography, the second with
Corine Land Cover, and the third simulation with Corine and SRTM topography. Figure 1
presents the geographical position of the model grid domain for the two cases. The first
column shows the default topographic height in the model (USGS), and the second column
shows the difference between the USGS and the high-resolution topographic map from
SRTM. Large differences were found in the topography height between SRTM and USGS
over the Alps region (Case II); the impact of these differences on lightning flashes will be
explained in Section 3.1.
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In this work, we denote the simulation with Corine Land Cover as WRF_CLC and
with Corine + SRTM as WRF_CLCS, while the simulation with 30-arc seconds is further
denoted as WRF_USGS. To initialize the model, a spin-up time of two days was applied for
the simulations. The model used meteorological initial conditions and lateral boundary
conditions from European Centre for Medium-Range Weather Forecasts (ERA-5) at 6 h [52].

The USGS land-use data set was developed in 1993. Meanwhile, some of the urban
areas in Europe have changed considerably. In 1985, the Directorate General of Environ-
ment of the European Commission initiated a program intended to provide consistent,
localized geographical information on the land cover of the Member States of the European
Community. The program was called the Corine Land Cover. Decision-makers recognize
the Corine Land Cover as an essential reference data set for territorial and spatial analysis
at different territorial levels [47].

A recent version of the Corine data (Corine Land Cover 2018) GeoTIFF file is used here.
These data are available at 100 m resolution with Lambert Azimuthal Equal-Area projection
(European Terrestrial Reference System 1989, (ETRS89)). These data were transformed to
WGS84 and reclassified to USGS land-use/land-cover categories. The remapping from
Corine to USGS was done following [57]. Data processing was done using QGIS, GDAL and
Python. The Corine Land Cover data set can be found on: https://www.eea.europa.eu/
data-and-maps/data/copernicus-land-monitoring-service-corine, accessed on 1 June 2022.

The topographic data with 3 s resolution (~90 m) based on the SRTM was down-
loaded from [58]. The GeoTIFF files contain 5◦ × 5◦ with the World Geodetic System of
1984 (WGS84) projection. The GDAL was used to merge the files, and data were further
processed in python to make the data suitable for WPS-readable format.

2.1. Description of WRF

The WRF-ARW version 4.2.2 system is a non-hydrostatic model (with a hydrostatic
option) that uses terrain following vertical coordinates based on hydrostatic pressure [49].
The geographical global terrestrial data sets for WRF include soil categories, terrain height,
monthly albedo and vegetation fraction, land-use, snow albedo and slopes. The land-use
proposed in this study was based on (i) the Corine 2018 Land Cover data set (100 × 100 m)
and (ii) the 30-arc seconds United States Geological Survey (USGS) database, which corre-
sponds to ~1 × 1 km. The horizontal resolution was set by the user in the pre-processing
step in WPS.

The vertical discretization of WRF comprises 51 levels with model top at 10 hPa (about
18 km). For the simulations with Corine Land Cover (+SRTM) and WRF_USGS, the same
microphysics and dynamics options were applied. The model was set up using a double-
moment Morrison microphysics scheme [18], which calculates the mass mixing ratios and
the number concentrations for five hydrometeor species (rain, graupel, cloud droplets,
cloud ice and snow). The model used the Noah land surface model scheme [59], with soil,
moisture and temperature in four layers, fractional snow cover and frozen soil physics,
and heat and moisture fluxes for the PBL. The Mellor–Yamada–Janjic (MYJ, Janjic [60])
PBL scheme was used to set up the model. The MYJ scheme calculates the eddy diffusion
coefficients, the mixing length, and the top of the PBL from the turbulence kinetic energy. It
uses the Eta surface layer scheme [61,62], which is based on the similarity theory [63] and
includes parameterizations of a viscous sub-layer.

The Rapid Radiative Transfer Model (RRTM) scheme [64] was used to account for
long-wave radiation, while the Goddard scheme calculated the short-wave radiation [65].
The 5-layer thermal diffusion scheme was selected. It is recommended not to activate
the cumulus scheme for grids smaller than 10 × 10 km [66]. Furthermore, the following
lightning options were selected in the model: do_radar_ref = 1, lightning_option = 2,
lightning_dt = 24, lightning_start_seconds = 600, flashrate_factor = 2, cellcount_method = 0,
cldtop_adjustment = 2, iccg_method = 2. Explanation of these settings can be found in [67].

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine
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2.2. Land Coverage Differences between Corine and USGS

In Figure 2, the distribution of the land use and land cover (LULC) is presented both
for the Corine Land Cover and 30-arc seconds USGS data.
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Figure 2. Geographical representation of the main land-use category classes with domains for
(a,b) Case I: 18 August 2011 (first row) and (c,d) Case II: 29 July 2013 (second row). The first column
shows default USGS LULC, and the second column shows updated Corine LULC.

Figure 2 is statistically summarized in Table 1, where the numbers of cells of each
land-cover class in the domain are listed. Here, only the predominant land-use type in the
grid cell has been used, considering the most dominant as the type with a fraction equal to
or greater than 0.6 in the cell. In the selected domain, the largest contrasts were located over
the Alps, where it was mostly listed as “Barren or sparsely vegetated” in the Corine data,
while the USGS showed wooded tundra for this area. Significant discrepancies were also
found, for example, in urban built-up land (more frequent in Corine), Cropland/Grassland
Mosaic (zero in Corine), Evergreen Needleleaf (higher in Corine) and Herbaceous Wetland
(zero in USGS).

Table 1. Comparison of the land-use categories together with the number of cells per land use
with the domains; region of homogeneous terrain: Case I (18 August 2011), and region of complex
mountain terrain: Case II (29 July 2013).

USGS Land-Use Category
Land-Use Description

# Cells in Case I # Cells in Case II

USGS CORINE USGS CORINE

1 Urban and Built-up Land 822 2649 132 1105
2 Dryland Cropland and Pasture 38,514 33,185 23,803 16,214
3 Irrigated Cropland and Pasture 20 - 74 235
4 Mixed Dryland/Irrigated Cropland and Pasture - - - -
5 Cropland/Grassland Mosaic 1455 - 202 -
6 Cropland/Woodland Mosaic 796 1522 1094 3021
7 Grassland 10 304 372 1074
8 Shrubland 13 - 155 -
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Table 1. Cont.

USGS Land-Use Category
Land-Use Description

# Cells in Case I # Cells in Case II

USGS CORINE USGS CORINE

9 Mixed Shrubland/Grassland - 375 303 734
10 Savanna 3 - 103 -
11 Deciduous Broadleaf Forest 2863 3434 5232 5845
12 Deciduous Needleleaf Forest - - - -
13 Evergreen Broadleaf - - - -
14 Evergreen Needleleaf 685 3069 2225 4471
15 Mixed Forest 11 729 1360 1668
16 Water Bodies 28,809 25,849 6209 5995
17 Herbaceous Wetland - 775 - 56
18 Wooden Wetland 13 - 3 -
19 Barren or Sparsely Vegetated - 146 6 1933
20 Herbaceous Tundra - - - -
21 Wooded Tundra 20 - 945 -
22 Mixed Tundra - - - -
23 Bare Ground Tundra - - - -
24 Snow or Ice 3 - 209 76

3. Results

In the following section, we evaluate the CG lightning calculations by WRF_CLC,
WRF_CLCS and WRF_USGS by comparing them to the CG observations from the European
Cooperation for Lightning Detection (EUCLID) network [68,69]. We also compare the
parameters that contribute to the development of convective thunderstorms and lightning,
i.e., specific humidity and temperature, with observations from the radiosonde database
from the University of Wyoming [70]. Furthermore, we compare the calculated heat fluxes
between WRF_CLC, WRF_CLCS and WRF_USGS and the convective available potential
energy (CAPE) and the vertical wind speeds with ERA5 reanalysis.

The European Cooperation for Lightning Detection (EUCLID) geolocates cloud-to-
ground (CG) strokes and intracloud (IC) pulses through a combination of time-of-arrival
(TOA) and direction-finding (DF) techniques. EUCLID is special as it combines real-time
raw sensor data of independent lightning location systems—either managed by national
meteorological services (NMSs) or by private companies—within a single central processor.
The latter is possible considering that all the sensors operate in the same low-frequency
(LF) range and are from the same manufacturer. The performance of EUCLID has been
tested extensively over the years, including in terms of location accuracy (LA) and detection
efficiency (DE). Those performances have been determined either from direct lightning
measurements at the Gaisberg Tower (GBT) [71], Peißenberg Tower in Germany [72] and
Säntis Tower in Switzerland [73,74] or from video and E-field records collected in different
regions within Europe [68,75]. The current LA is of the order of 100 m based on the location
error directly measured at the GBT and based on video and E-field recordings within the
majority of the network. The DE for negative CG strokes and flashes reaches 70% and 96%,
respectively, based on GBT data and are determined to be 84% and 98%, respectively, using
video and E-field records. On the other hand, the DE for positive discharges is greater than
84% and 87% for CG strokes and CG flashes, respectively [68]. Finally, IC DE was validated
during the HyMeX experiment [76,77] in the south of France [78,79]. It followed that the
DE of isolated IC flashes, i.e., pure IC flashes without any CG stroke in them, has a large
variation ranging from 10% up to 67% from one thunderstorm to another. This variability
is mainly attributed to differences in the vertical extent of the IC flash and to the flash rates
during a storm.
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3.1. Lightning

WRF-simulated lightning flashes were compared with the ground-based observations
for the two cases: 18 August 2011 (Figure 3) and 29 July 2013 (Figure 4), considered in
the study. The comparisons were made over different times of the day to evaluate the
model performance in capturing the temporal evolution of thunderstorms. Overall, WRF
overestimated the flash counts for both simulations (WRF_USGS as well as WRF_CLC and
WRF_CLCS). The overestimation was found to be lower in the case of WRF_CLC(S), as
seen in the difference between WRF_USGS and WRF_CLC(S).
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In Figure 3a, the cloud-to-ground (CG) lightning flashes according to WRF_CLC,
WRF_CLCS, WRF_USGS and observations are shown for 18 August 2011 at 15, 17, 18 and
20 UTC. Intracloud flashes were not considered in the analysis. CG lightning according to
WRF_CLC, WRF_CLCS and WRF_USGS were calculated over parts of Belgium and the
north-western part of France, which is in agreement with the observations. This indicates
that the timing and the spatial distribution of CG lightning was well-represented by the
model. Until 20:00 UTC, WRF_CLC, WRF_CLCS and WRF_USGS calculated no lightning
flashes over the Netherlands, the southern of Paris, the eastern part of the UK, Luxembourg
or over a large part of Germany, which is corroborated by the observations.

At 20:00 UTC, the thunderstorm with lightning activity moved further eastwards
and covered the German cities of Dusseldorf, Cologne and Dortmund, moving further
north-eastwards up to Bremen. WRF_CLC, WRF_CLCS and WRF_USGS simulated the
eastward progression of the thunderstorm, as seen in the observations. However, the three
simulations calculated CG lightning activity over the northern part of France and Belgium,
whilst the observations showed minor lightning activity. In general, WRF_USGS calculated
more CG lightning flashes over the northern part of France, Belgium, the Netherlands
and Germany than WRF_CLC and WRF_CLCS. East and northwest of Paris, WRF_CLC
calculated more CG lightning activity than WRF_USGS. The fact that WRF_USGS generally
calculated more lightning flashes than WRF_CLC corroborates the results of [55], which
shows that WRF overestimates the number of lightning flashes.

The differences in CG lightning between WRF_CLC and WRF_USGS LULC are shown
in the third and fourth row (WRF_CLCS vs. WRF_LULC). The differences in CG lightning
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are clearly visible over parts of Belgium and northwest of Paris. In general, WRF_USGS
calculated a higher number of lightning flashes over Belgium and the northern part of
France than WRF_CLC and WRF_CLCS. Only west of Paris did WRF_CLC(S) calculate more
CG flashes than WRF_USGS. The difference in CG lightning showed a similar pattern to
the differences in land-cover classes between USGS and Corine. This is further investigated
in the following sections.

A quantitative comparison of the reduction in the lightning flashes between USGS
and Corine LULC showed that, with the latter, 8% fewer lightning flashes were found.
With Corine + SRTM (WRF_CLCS), 10% fewer flashes were found when compared to the
simulation with USGS topography.

In Figure 3q, the Student’s t-test was performed at individual grid points between
WRF_USGS and WRF_CLCS for Case I (18 August 2011), and the region with the statistically
significant difference (dots) is shown. The dots imply a statistically significant difference at
95% level.

In Figure 4, the CG lightning flashes over the Alps as observed by EUCLID and by
WRF_CLC, WRF_CLCS and WRF_USGS on 29 July 2013 at 00, 02, 06 and 08 UTC are pre-
sented. This allowed us to investigate the impact of the topography on CG lightning flashes.
The observations showed that high lightning activity was observed over the southwestern
part of the Alps, stretching from the Provence (southeast France) and Piedmont region in
Italy up to the central part of Switzerland.

For Case II, the number of lightning flashes between USGS and Corine LULC was
6% lower with Corine LULC. With Corine + SRTM, 9% fewer flashes were found when
compared to the simulation with USGS topography, which is in line with the results of [55]
as described earlier. Interesting to see is the differences southwest of the Alps and over
the Piedmont region in Italy, which corresponds to the observed high lightning activity,
indicating that the timing and the spatial distribution of the calculated CG lightning by the
two simulations were in agreement with the observations. The differences in the number
of CG flashes between the two simulations mainly follow the largest differences in the
topography.

To better understand the topography’s impact on the number and spatial distribution
of the lightning flashes, the difference in topography height between SRTM and USGS is
shown in Figure 1d. The blue and red colours indicate a difference in height larger than 30 m
between the two data sets. The red colour indicates that SRTM is higher, while the blue one
implies that the USGS is higher. The green colour reveals areas where differences between
SRTM and USGS are within ±10 m. It is clear from this figure that SRTM shows higher
terrain southwest of the Alps, including the Piedmont region and parts of Switzerland.

The highest mountain peaks were calculated by the USGS topography (maximum
was 3518 m, whilst the maximum by SRTM was 3458 m). The higher-resolution SRTM
topography resolved the mountain peaks, slopes and valleys (the latter indicated in blue
in Figure 1d) better than the coarser resolution of the USGS data set, which impacts the
horizontal and vertical wind speeds and directions, important processes in the occurrence
of lightning [11]. Research in Ref. [43] found higher wind speeds, cloud liquid water and
precipitation quantities in the simulation using the SRTM topography than the simulation
using the USGS topography.

3.2. Heat Fluxes

To explain the differences in CG lightning according to WRF_CLC, WRF_CLCS and
WRF_USGS, the sensible and latent heat fluxes were investigated, since those are responsi-
ble for the amount of moisture, temperature profiles and PBL development.

The diurnal growth of the PBL is regulated by the sensible (dry) and latent (moist)
heat fluxes. When the Bowen ratio, i.e., sensible-over-latent heat flux, is greater than one,
i.e., sensible heat flux > latent heat, the PBL is deeper than when the Bowen ratio is small,
e.g., 0.5 over wet areas. In Ref. [80], research showed that the convection, and therefore the
PBL height, is controlled mostly by sensible heat fluxes. Nevertheless, in areas with Bowen
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ratios below one, the near-surface temperature is lower than in areas with a Bowen ratio
above one [81]. The diversity in CG lightning flashes can be explained by the different heat
fluxes in the three simulations by WRF_CLC, WRF_CLCS and WRF_USGS.

Analysing the latent (moist) heat fluxes (LH) on 18 August at 12 UTC in Figure 5, it can
be seen that, over the south-eastern part of Belgium, large differences were found between
WRF_CLC and WRF_USGS. In general, LH fluxes by WRF_USGS were around 390 W/m2,
while by WRF_CLC, they were around 350 W/m2. The reason for this is that the dominant
type of land cover in USGS was classified as Dryland Cropland and in the Corine data set
as Mixed Forest.
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Moreover, large differences in the LH fluxes were found over those areas that are
classified as urban built-up in Corine, but classified differently in USGS. For example, more
urban built-up areas were found in the Netherlands, Belgium and Paris in Corine (see
Figure 2), resulting in lower LH fluxes than by WRF_USGS, which corroborates the results
by [43,50].

Just the opposite, for the grid cells where Corine Land Cover registers more urban
Land Cover classification than USGS, higher sensible heat fluxes were generally found
by Corine, as shown in Figure 6. The blue colour indicates higher sensible heat fluxes by
WRF_CLC than by WRF_USGS. Moreover, higher sensible heat fluxes were found over the
southern part of the Ardennes in Belgium, which is related to the differences in land cover
between USGS and Corine, as mentioned earlier.
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The differences in the heat fluxes between the two simulations, as described above,
may play an important role in the formation and height of the convective clouds. In fact, the
origin of the convective clouds often lies above the PBL [82,83]; higher sensible heat fluxes
deepen the PBL heights [43,50,84] and therefore impact the height of the convective cloud
base and the depth of the convective clouds. Shallower convective clouds may lead to a
reduced build-up of electrical charges, which may decrease the number of lightning flashes.

3.3. Vertical Profiles of Model Bias

WRF simulations, driven by USGS and Corine data sets, were compared with ra-
diosonde observations from Idar, Trappes, Bergen, De Bilt and Hestmonceux, and the
vertical profiles of biases (model–radiosonde) were estimated for temperature (T), specific
humidity (Q) and wind speed (WS) (Figures 7–9 and Table 2). USGS- and Corine-driven
model simulations showed good agreement with the radiosonde observations. Earlier
studies have also applied Corine data to simulate meteorology over the European domain
and have reported good agreement of WRF results with observations [43,85].
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Table 2. Mean bias error (MBE) and Root-mean-square error (RMSE) in the model-simulated meteoro-
logical profiles of Temperature (T), Specific humidity (Q) and Wind speed (WS) over five radiosonde
stations between 900–500 hPa on 18 August 2011 at 12 UTC.

Idar Trappes Bergen De Bilt Herstmonceux

USGS Corine USGS Corine USGS Corine USGS Corine USGS Corine

T (◦C)
MBE 0.53 0.14 0.44 0.40 0.21 0.15 0.14 0.10 0.21 0.05

RMSE 0.94 0.63 0.43 0.48 0.14 0.20 0.85 0.69 0.63 0.29

Q (g kg−1)
MBE 1.50 1.01 −0.36 −0.33 0.52 0.65 0.07 0.07 0.77 0.89

RMSE 6.47 3.93 2.01 1.96 0.73 0.78 0.82 0.56 0.82 1.19

WS (ms−1)
MBE 3.60 3.64 −0.67 −0.73 −1.02 −0.51 −1.25 −0.44 0.11 −0.80

RMSE 20.12 17.96 4.83 5.16 2.36 1.69 3.39 2.15 2.00 1.82

In Figure 7, the bias of the vertical profile of the temperature over five radiosonde
stations are shown for 18 August 2011 at 12 UTC. For Idar and Hestmonceux, larger biases
were found by WRF_USGS (four times higher by WRF_USGS), indicating that WRF_CLC
was in better agreement with the observations.

Figure 8 presents the bias of the vertical profile of the specific humidity over five
radiosonde stations (Idar, Trappes, Bergen, De Bilt and Herstmonceux) at 12 UTC on
18 August 2011. In general, the biases by the two simulations varied, except for Trappes.
Looking at the bias values in Table 2, we see that only for Idar was WRF_CLC (1.01) in
better agreement with the observations than WRF_USGS (1.50), while for the other stations,
the biases were similar between the two simulations.

In Figure 9, the bias of the vertical profile of the wind speed over five radiosonde
stations are shown for 18 August 2011 at 12 UTC. For Trappes, small differences between
WRF_CLC and WRF_USGS were found when compared to the observations, whilst for
the other stations, larger differences were found. The largest difference in the bias be-
tween WRF_USGS and WRF_CLC when compared to the observations was found for
Herstmonceux at 12 UTC, 0.11 and −0.80, respectively.

3.4. CAPE and Vertical Wind

CAPE is a measure of the potential development of severe weather. CAPE depends
on how much water vapour is available in the atmosphere and determines the velocity
of upward drafts in convective clouds. More water vapour in the atmosphere leads
to potentially more convection. Furthermore, the lightning activity is strongly linked
with the convective updrafts and variations in the vertical velocity. Therefore, we also
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evaluated the convective available potential energy (CAPE) and vertical wind velocity
in the WRF simulations against the ERA5 reanalysis [86], which was assimilated with
a variety of observational data sets (Figures 10 and 11). The vertical wind velocity is
a measure of atmospheric stability and depends on the type of land cover, the friction,
the vertical transport of the sensible and latent heat fluxes and the resulting vertical
temperature profiles [82]. Higher vertical winds were simulated by WRF_USGS, resulting
in more convection and, therefore, deeper convective cloud formation and the potential of
more lightning.

Domain-wide mean values of CAPE and vertical winds are given in the Table 3 for
ERA5 and the three different WRF simulations. The spatial distribution of CAPE in the
WRF simulations was found to be similar to that in the ERA5 reanalysis, despite lesser
variability over local scales in the ERA5 due to its coarser resolution than WRF. While
both WRF simulations tended to overestimate the CAPE values in ERA5, nevertheless, the
WRF_CLC simulation showed a slightly lower bias than the USGS simulation. Both of
the WRF simulations reproduced general features of vertical wind variability seen in the
ERA5 reanalysis, though the winds were slightly weaker in WRF_CLC and WRF_CLCS
than that in the WRF_USGS (Figure 11). The reason for the differences in vertical wind
speeds between the simulations are the differences in land cover and the resulting sensible
and latent heat fluxes, as described before. Quantitatively, WRF_CLC and WRF_CLCS had
a lower mean bias against the ERA5 reanalysis in comparison to that in WRF_USGS.
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In Figure 10, the CAPE values (J/kg) are presented by ERA5 data, WRF_CLC and
WRF_USGS for 18 August 12 UTC. At 12 UTC, higher CAPE values were generally found by
WRF_USGS over the north of France, the northeast of Belgium, south of the Netherlands and
the western part of Germany. Higher CAPE values by WRF_USGS were in agreement with
more lightning activity calculated than by WRF_CLC, as described earlier. As mentioned
before, WRF_USGS produced generally higher latent heat fluxes over the north of France
and the southern part of Belgium due to the differences in land-cover classes between USGS
and Corine Land Cover data sets (Table 1 and Figure 2). CAPE is a measure of buoyant
energy of the air parcels, and the sensible heat flux represents the energy transferred to
the atmosphere. The higher values of sensible heat fluxes were observed in the regions
of high CAPE values. However, since the heat fluxes are affected by the type of land use,
there were some differences in the spatial distribution of the two parameters. The higher
lightning activities were shown to be prominent over the regions of higher CAPE values
(Figures 3 and 10), attributed to stronger convective conditions. These regions showed
greater change in heat flux by up to 200 W m−2 in response to change in terrain and
land-cover data in the model. The results suggest that lightning activities are associated
with the CAPE and heat fluxes.

The vertical velocities become larger with the passing of thunderstorms. The compari-
son of the vertical velocity for three different hours, 10 UTC (before the lightning event)
and 18–20 UTC (during the lightning event) in Case I, is shown in Figure 12.
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We further checked the radar reflectivity at −15 ◦C and updraft helicity in the model
(Figure 13). The radar reflectivity and updraft helicity were seen to be higher over the
regions of prominent lightning flashes in our simulations. This is in agreement with
previous studies suggesting that the fluxes of the microphysical species, such as graupel at
−15 ◦C in the mixed phase, are correlated strongly with the storm flash rates [87,88].
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Table 3 shows the domain median values for CAPE and vertical winds. Between
WRF_USGS, WRF_CLC and WRF_CLCS, the differences in CAPE values over the modelling
domain were small, while compared with ERA5, the differences were larger (up to a factor
of 1.5). The absolute differences in the vertical wind speeds between ERA5 and the three
simulations were small. However, looking at more specific locations in the model domain,
where high lighting activity was observed, we see in Figure 11 that the impact of changing
LULC on vertical wind speeds at 850 hPa showed differences between USGS and Corine
(Figure 11c,d) up to 3 Pa·s−1. As mentioned earlier, updrafts play an important role in
the build-up of electrical charges in the convective clouds and the potential resulting
lightning flashes.

4. Conclusions and Discussions

In this paper, the impact of the high-resolution Corine Land Cover and the SRTM
topography data sets on CG lightning calculations by the numerical regional model WRF
model was investigated. Two lightning episodes were selected: (1) a lightning episode on
18 August 2011 over the non-complex terrain over Belgium and (2) a lightning episode
on 29 July 2013 over a complex terrain, the Alps. The analysis of CG lightning flashes
was performed by comparing the results of a WRF simulation using USGS topographic
and land-cover data (resolved to 30-arc seconds) to a simulation using Corine Land Cover
(100 × 100 m), a third simulation using Corine and SRTM topography data (90 × 90),
and observations.

In general, CG lightning flashes calculated by WRF were in qualitative agreement
with the observations. This indicates that the timing and the spatial distribution of CG
lightning by the model are well-represented. Nevertheless, the analysis of the differences in
CG lightning over Belgium showed that WRF_USGS generally calculated more CG flashes
than WRF_CLC. The difference in CG lightning showed a similar pattern to the differences
in land-cover classes between USGS and Corine. Large difference in the sensible and latent
heat fluxes were found between the two simulations due to the differences in land-cover
classes between Corine and USGS. WRF simulation, driven by the updated Corine Land
Cover data, reproduced the meteorological observations consistent with previous studies.
The differences with ERA5 reanalysis fields were slightly lesser for Corine simulation
than that in the USGS simulation. In general, higher vertical wind speeds by WRF_USGS
were found, resulting in more convection and deeper convective clouds. While both of
the simulations predicted more lightning flashes, the overestimation by WRF_CLC and
WRF_CLCS was lower. This corroborates the higher calculated CAPE values by WRF_USGS
when compared to ERA5, leading to more CG lightning flashes than by WRF_CLC and
WRF_CLCS.

The analysis over the Alps showed that the timing and the spatial distribution of the
calculated CG lightning flashes by WRF were in good agreement with the observations.
The differences in the topography led to differences in vertical wind speeds and in the
formation and height of the convective clouds, which explain the differences in CAPE
values and the resulting differences in CG lightning flashes between the two simulations.

It is suggested that the potential improvements in meteorology due to better represen-
tation of the LULC could be offset, to some extent, by the parameterizations of physical
processes. Significant improvements in meteorological parameters were achieved over the
Himalayas through an improved representation of topography; however, the model still
showed limitation in reproducing local-scale dynamics [90].

This study shows that high-resolution land cover and topography data reduce the
number of CG lightning flashes simulated by WRF, which may contribute to reducing the
uncertainties in CG lightning calculations by the model. Therefore, we emphasize that it
is crucial to exploit the full potential of accurate topographical inputs. Moreover, further
improvements in parameterizing land–atmosphere interactions will be important future
steps to improve lightning calculations.
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We showed the differences in the geographical and temporal distributions of the
cloud–ground lightning flashes between the WRF simulation with USGS Land Cover and
topography and the simulation with Corine Land Cover and SRTM topography. In addi-
tion, we showed the differences in calculated latent and sensible heat fluxes, vertical wind
and temperature profiles and CAPE values between these simulations. These differences
translated into differences in CG lightning flashes between the simulation with the Corine
Land Cover and SRTM topography and the simulation with the USGS Land Cover and
topography. Some studies [43,50,91] have previously evaluated the impact of the Corine
Land Cover and SRTM topography on calculated meteorological parameters by comparing
with observations. These studies showed that the improved meteorological variables are
the result of implementing the high-resolution Corine Land Cover and SRTM topography
in the WRF model. Our study confirmed that implementing high-resolution land cover and
topography contributes to the reduction in uncertainties in calculating cloud–ground light-
ning flashes. We recommend the use of high-quality resolution land cover and topography
data in modelling experiments that study extreme weather events, such as heat waves, and
land–atmosphere interactions, such as lightning flashes.
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