

CITIZEN WEATHER REPORTS AT RMIB AND THEIR USE FOR RADAR-BASED HAIL DETECTION VERIFICATION

Maarten Reyniers, Laurent Delobbe, Sylvain Watelet **Royal Meteorological Institute of Belgium (RMIB)**

Summary

- RMIB's smartphone app is a **popular weather app** in Belgium (659k active users in July 2022)
- Since August 2019, users can send a geolocated weather report
- Observations **publicly available** in the app and on the WOW-platform (<u>wow.meteo.be</u>)
- 2,3 million observations collected over a period of three years
- **Basic quality control** (plausibility check) is performed on every incoming observation
- **User reputation** mechanism while respecting GDPR regulations
- Current **use cases** of collected data at RMIB:
 - Evaluating the performance of radar-based hail detection (this poster)
 - Dual-pol based hydrometeor classification scheme (this poster + talk by S. Watelet)

General concept

Users can send their weather observation with a few simple taps on the screen.

- Verification of the official weather warnings and the forecasts per commune
- Verification of the fog and precipitation prediction of the Alaro-1.3 km NWP model
- Experimental ML fog prediction algorithm

Plausibility check and user reputation

- A **plausibility score** is assigned to almost* every observation
- Scoring based on comparison with INCA-BE nowcasting system (Reyniers, 2021)
- Currently three possibilities:
 - false (score=0%),
 - doubtful (score=50%),
 - *plausible* (score=100%)
- **User reputation**: mean of plausibility scores of that particular user (more exactly: device-id)

[1] Strong population density bias: strong correlation between population density and spatial distribution of observations

[2] diurnal cycle (cont'd)

Distribution of plausibility scores

- divide by all observations (#all)
- divide by #(precip+no-precip) observations

[3] Overrepresentation of events with more impact

Some types will be proportionally more reported than others, for example hail more than rain.

E.g., #precip/#(precip+no-precip) = 0.26 = more than climatology (which is between 0.05 and 0.1)

Use case 1: user observations as long-term dataset for evaluating the performance of an operational radar-based hail detection scheme

What?

- Waldvogel's hail detection algorithm using single-pol data (Echotop-45 dBZ) and freezing level
- Output = **probability of hail** (POH); see Lukach et al. (2017) for a detailed description

Elimination by dividing observation density by

population density \rightarrow no particular structure

Some hint for increased observation density along

• temporal residents elsewhere domiciled and/or

people at coast tend to send more observations.

the coast though, which can have two reasons:

How?

- Choose **POH threshold** to convert probabilistic information **into YES/NO information** (here: 0% and 50%)
- Compare instantaneous radar-maps with observations: introduce tolerance on time and location
 - Max distance between radar obs. and report : 2.5 km

Use case 2: user observations as auxiliary data for the development and validation of a new dual-pol based hydrometeor classification scheme

What?

New precipitation type product for RMIB in development Input

[4] App design and default values

influence reporting behaviour

toggle for some observation types? -

Belgian dual-pol weather radars + NWP model Alaro

Algorithm

Combination of

- Max delay between radar obs. and report : 10 min

Results

2	<u>Radar Jabbeke</u> Study period: May-Sept. 2020+2021	Probability of detection (POD)		Probability of false detection (POFD)		Radar Wideumont Very similar results
		Detection if probability > 0 %	Detection if probability > 50 %	Detection if probability > 0 %	Detection if probability > 50 %	POD = 0.74 (>0%) POD = 0.65 (>50%)
		, 503 detected	390 detected	18536 hail detected	6217 hail detected	PODF = 0.14 (>0%) PODF = 0.06 (>50%)
991	. → 662 🤇			(faise positives)	(false positives)	c 123583 ← 158122
hail report plausibility and size > (rts with at less than y > 90 % 150 km • 0.5 cm from rada	n 159 missed	272 missed	105047 no hail (correct negatives)	117366 no hail (correct negatives)	valid rain rain reports
		r POD = 0.76	POD = 0.59	POFD = 0.15	POFD = 0.05	reports at less (no hail, than 150 km no snow)

- dual-pol scheme by Keenan (2003) developed at BOM
- melting scheme along the vertical from Steinert et al. (2021) at DWD \bullet Examples

Instantaneous precipitation type product compared with observations received between 5 min before and 10 min after the product timestamp

Acknowledgements Joffrey Schmitz, Stéphane Dekeyzer, Emilie Delhaye References Keenan (2003): Aust. Met. Mag. 52(1), 23-31 Lukach (2017): doi:10.5281/zenodo.5798952 Steinert (2021): doi:10.1175/WAF-D-20-0232.12 Lukach (2017): doi:10.1002/met.1623