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1 SHORT INTRODUCTION TO CNNS

1 Short introduction to CNNs

A convolutional neural network (CNN) takes an image as input and gives probabilities for dif-
ferent classes in the dataset as output. A CNN consists of several subsequent layers, which
are in general split into two major parts. The first part are a few convolutional layers which are
alternated with maximum pooling layers. The second part consists of a few dense layers which
allow to obtain probabilities for the different classes in the dataset.

The convolutional layers use a kernel to scan the image and calculate the input of the next
layers. A kernel is a rectangular shape that takes a small part of the image into account,
calculates a value from it, and then moves to the next part of the image. Doing so, it creates
a new ‘image’ of those calculated values that can be used as input for the next convolutional
layer. Before using it as input for the next layer, the values are first transformed by an activation
function, which allows to introduce some non-linearities into the model. The kernels used in
this project were squares of size 3, 4 or 5, but they can be any rectangular shape. This step
of scanning the image with a kernel is typically done several times using different kernels to
obtain multiple output ‘images’ of the convolutional layer. Each convolutional layer is followed
by a maximum pooling layer. This layer divides the image into several rectangles and returns
the largest value from each rectangle, it is a dimensionality reduction technique.

The final part of the CNN consists of several dense layers. These layers contain multiple
neurons that allow to calculate all sorts of relations between the input values. The input values
of these dense layers are the flattened outputs of the convolutional/maximum pooling layers
from the first part of the CNN. The final output from these dense layers are probabilities for all
classes in the dataset.
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Figure 1: General example of the structure of a CNN (source: towardsdatascience. com).

For a slightly more elaborate yet easy to understand explanation, see e.g. the introduction
onhttps://towardsdatascience.com. For this project, the TensorFlow library in Python
was used to construct the network. TensorFlow (https://tensorflow.org) is an open
source library developed by Google that allows to build neural networks of various complexities
and for various causes.


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://tensorflow.org

2 METRICS

2 Metrics

Two metrics were used for this project:

» Accuracy

* Confusion matrix and related scores

Accuracy is a very basic metric: it is simply the fraction of the images that were predicted
correctly by the CNN. However, this metric is not ideal for datasets with irregularly distributed
data. Take for example a dataset with 2 classes, ‘cats’ and ‘dogs’. If 90% of the images were
of cats and 10% were of dogs, then the CNN would be able to get 90% accuracy by always
predicting ‘cat’. However, such model clearly has not much skKill.

The second metric is a confusion matrix. This metric compares the true labels with the
predicted labels in a matrix as shown in figure |2l This matrix will be extended to respectively
five and three classes in the next sections of this report. From the confusion matrix, a few
scores can be calculated. The scores are calculated for a particular class, so they do not apply
to the full dataset. The formulas shown below are calculated for the ‘Positive’ class in figure

. ision = TP _
Precision = BLFP

. = 1P _
Recall = 5y

_ 2-Precision-Recall
» F1 Score = Precision+Recall

Precision can be interpreted as the fraction of predictions of a certain class that actually belong
to that class, so it is related to the probability to get false alarms. Recall is the fraction of
images of a class that are also predicted in that class, so conversely it says something about
the misses. The F1 Score is an arithmetic mean of precision and recall. These scores can be
used to select CNNs based on certain criteria and allow to focus on some classes more than
on others.

TP | FN

Positive

Actual

FP | TN

Negative

Positive Negative

Predicted
Figure 2: General example of a confusion matrix (with 2 classes).



3 EXPERIMENT 1: SINGLE WEBCAM AND FIVE VISIBILITY CLASSES

3 Experiment 1: single webcam and five visibility classes

This section describes the steps taken and the final results for a CNN based on images of the
Mont Rigi webcam in 2020. For this section, five classes were defined: ‘clear view’, ‘dawn/dusk’,
‘fog’, ‘night’ and ‘reduced visibility’. The distribution of the images over the different classes
is shown in table |1| Examples of these images can be found in appendix [Bl A distinction is
made between the images of only October 2020 and all images of 2020. This is because the
October images were the first that were labelled and thus also the ones that were used for
the first analyses. Most images correspond to the ‘clear view’ or the ‘night’ classes, while the
other classes roughly contain between 5% and 10% of the images. In this first exploratory
experiment, the accuracy will be the main metric.

] | October 2020 | 2020 \

clear view 2077 38295

(23.5%) (37.4%)

323 6436

dawn/dusk (3.7%) (6.3%)

fog 876 8685

(9.9%) (8.5%)

night 4234 40978

(47 .8%) (40.0%)

reduced 1339 8058

visibility (15.1%) (7.9%)
| total | 8849 | 102452 |

Table 1: Distribution of the Mont Rigi images over the five different classes.

3.1 Images of October 2020
3.1.1 Labelling of the images
The labelling process consists of 2 parts:

1. Labelling the images a first time.

2. Training a basic model on those labelled images and using this model to detect potential
wrongly labelled images. The images for which the model assigned a probability below
70% to the true label were relabelled.

The first step is very time consuming since all images have to be looked at individually and have
to be given a label. However, this can be done more or less efficiently since the images are
ordered chronologically and multiple subsequent images thus correspond to the same class.

The second step is used to find and correct labelling mistakes. The idea is that a model
trained on the labelled images will find the general pattern in the images. That means that any
images that do not match the pattern, either because they are edge cases between two classes



3 EXPERIMENT 1: SINGLE WEBCAM AND FIVE VISIBILITY CLASSES

or because their label is wrong, will be predicted wrongly (or with low confidence) by the model.
Those images are then relabelled. For this step however, the advantage of chronologically
ordered images disappears. But since the number images that have to be relabelled is a lot
smaller than the full dataset, this step can still be done in an acceptable amount of time. Of
course, not all images in the relabelling process receive a new label, but the obvious labelling
mistakes will be corrected.

After the labelling process, the labelled images are used to create a directory structure that
can be used as input for the CNNs. These models require the images to be in directories with
their class labels as folder names. For this project, the images were not directly copied to
their respective folders, but instead symbolic links (‘symlinks’) to the images were added in the
folders. This allows to save a significant amount of disk space by not having to copy thousands
of images.

3.1.2 Finding the optimal hyperparameter configuration for the CNN
Multiple hyperparameter configurations are tested. The hyperparameters that are varied are:

« The number of convolutional layers: 2 or 3. The first part of the CNN consists of
convolutional layers alternating with maximum pooling layers. In case of 3 convolutional
layers, each maximum pooling layer has a 2x2 view. In case of 2 convolutional layers, the
first maximum pooling layer has a 2x2 view and the second one a 4x4 view. This is done
to keep the number of input values for the dense layers more or less the same between
the cases with 2 and 3 convolutional layers.

* The kernel size: 3x3, 4x4 or 5x5.

» The stride length: 1 or 2. This is the step size by which the kernel scans the image.
After a first test it was clear that stride length 1 outperformed stride length 2, so this
hyperparameter was kept at 1 afterwards.

» The activation function: ‘relu’, ‘tanh’, ‘sigmoid’, ‘softplus’, ‘elu’. These functions are used
to transform the output of the convolutional layers and the dense layers. They introduce
some non-linearities in the model. The are plotted in figure 3]

* The number of kernels in the first convolutional layer: 8 or 16. This defines the
number of output ‘images’ of the first convolutional layer. This value is multiplied by 2 for
each subsequent layer.

* The size of the first dense layer: 64 or 128. This defines the number of neurons in the
first dense layer.

A final value that was also varied but that is not really a hyperparameter is the resolution of the
input images. There are two reasons to reduce the input resolution: memory use and training
time. However, reducing the input resolution also reduces the performance of the model so a
strong resolution reduction is not advised. This trade-off led to a final resolution reduction by
a factor 8 in both height and width. In practice, the native resolution of the archived webcam
images was scaled down from 1280x960 pixels to 160x120 pixels, while keeping the original
aspect ratio of 4:3.
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3 EXPERIMENT 1: SINGLE WEBCAM AND FIVE VISIBILITY CLASSES
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Figure 3: The different activation functions used.

The optimal hyperparameter configuration was found using KFold cross-validation (for this
project, k=5). In this case the dataset was split into 5 folds of equal size. The model was then
trained on 4 of those sets and validated on the fifth set. This is done 5 times, each time with a
different validation set. Finally, the results are averaged and one final accuracy was obtained
for the model. Doing this for all combinations of the hyperparameters leads to a result as in
figure |4 The bottom line here is that the different configurations span a range of accuracies.
Most of them are high but there are also model configurations with rather bad scores. Also
clear in the figure is that the training accuracy is typically higher than the validation accuracy.
However, since the validation accuracy does not decrease after a certain number of epochs,
there seems to be no problem with overfitting. For further steps, the model configuration with
the highest validation accuracy was chosen.

The loss function that is also shown on the figure is the SparseCategoricalCrossentropy func-
tion of TensorFlow.

In this case, the chosen model had the following hyperparameter configuration:

+ 2 convolutional layers
* ‘tanh’ activation function
» 3x3 kernel
* stride length 1
» 16 kernels in the first convolutional layer
» 128 neurons in the first dense layer
Figure [5| shows the equivalent figure of figure |4, but now with only the chosen model. The

highest validation accuracy was reached after 17 training epochs so this is also the number of
epochs used to train the final model.
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Figure 4: Results of the hyperparameter tuning using KFold cross-validation with k=5.

3.2 All 2020 images

For this part, many results are taken from the previous part. Some things are different, however.
During the labelling process, the relabelling step was not done because this is very time con-
suming with a large set of images (around 16000 in this case). Also, the KFold cross-validation
step was not done due to computer time constraints with the very large dataset. As a result, the
chosen hyperparameter configuration based on the analysis with only images of October 2020
was used to train a model on all images of 2020. This is probably not the same configuration
that would result from a full cross-validation analysis, but a significant difference in accuracy is
not expected.

First, the model was trained on 80% of the images and evaluated on the other 20% to get
a performance measure of the model. The results are summarised in a confusion matrix which
is shown in figure 6] The overall accuracy is 93.1%. The different scores calculated from this
confusion matrix are given in table [2|

From the calculated scores it is clear that the two main classes (‘clear view’ and ‘night’) are
predicted correctly over 98% of the time. The recall score of the other classes is a little bit lower,
however still 92% of the fog cases are detected. When taking a closer look at the confusion
matrix in figure [6] we can also see where the wrong cases are located. Here it is clear that they
mainly correspond to edge cases. For example 29% of the ‘dawn/dusk’ images are predicted as

10
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Training Accuracy Validation Accuracy
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Figure 5: Results of the model with the highest validation accuracy.

| | Number of images || Precision | Recall | F1 Score |

clear view 7766 94.4% | 98.0% | 96.1%
dawn/dusk 1260 86.2% | 54.9% | 67.1%
fog 1755 90.1% | 92.3% | 91.2%

night 8079 95.7% | 99.2% | 97.4%
reduced visibility 1630 79.4% | 70.6% | 74.7%

Table 2: Performance of the CNN based on all Mont Rigi images of 2020.

‘night’, but this makes sense because there is no hard boundary between those classes. The
same holds for fog’ images that are predicted as ‘reduced visibility’ or for ‘reduced visibility’
images that are predicted as ‘clear view’ or as ‘fog’. Other wrongly predicted images are a bit
more strange, for example the ‘fog’ image that is predicted as ‘clear view’. This case is probably
due to a labelling error. Since the relabelling step was not done for the full 2020 dataset, it is
very likely that there are still such wrongly labelled images present in the dataset.

In general, the model performs well. The loss in accuracy or lower other scores is mainly
due to the fact that the different classes have no clear boundaries, which means that the model
is probably not really wrong either for those cases. Some other wrongly predicted images are
most likely due to labelling errors.

As a final step, the model is trained again but now on the full dataset. This model is then
saved and can, for example, be used to predict new images in real time.

11
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Mont Rigi: full 2020 data
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Figure 6: Confusion matrix for the Mont Rigi model calculated from a test set containing 20% of the
images.
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4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES

4 Experiment 2: multiple webcams and three visibility classes

This section describes the steps taken and the final results for a few CNNs based on images
of six RMI webcams in 2020. The six webcams are located in Diepenbeek, Melle, Mont Rigi,
Stabroek, Wideumont and Zeebrugge; their location is shown on the map in figure In the
current experiment, only images of 20 days were chosen for each webcam. From those 20
days, 10 days were selected from the days for which people indicated that there was fog in the
RMI app. This was done to make sure that there were an acceptable number of ‘fog’ images in
each dataset. These 10 days were spread more or less evenly throughout the year. The other
10 days were chosen randomly from all other days of 2020. Contrary to the previous section,
now only three classes were defined: ‘clear view’ (no fog), ‘fog’ and ‘too hard to see’. Most
images could be assigned to the ‘clear view’ or ‘fog’ classes. The distribution of the images
over the different classes is shown in table Examples of these images can be found in

appendix

< S

Zeebrugge Stabroek

Mgl)e O

Diepenbeek

©

Mont Rigi

O

Wideumont

Figure 7: The location of the six RMI webcams included in Experiment 2.

For most webcams, the percentage ‘fog’ images is between 15% and 20%. It is lower in
Stabroek and higher in Mont Rigi. Also clear in the table is that not all webcams have im-
ages in the ‘too hard to see’ class. These images typically correspond to very dark nights,
which occur mostly in the Ardennes (Mont Rigi and Wideumont). The few ‘too hard to see’ im-
ages in Stabroek are due to the fact that the webcam in Stabroek is a black-and-white camera.
This made it sometimes difficult to really distinguish fog from no fog. The final line in table
shows the sum over all webcams. These values are also shown because a separate CNN will
also be trained on the combined set of images instead of only on images of one webcam.

13



4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES

] | clear view | fog | too hard to see || total
Diepenbeek (842623/0) (1 3.87%’/0) (og/o) 9595
Melle (8%6;30) (1191.;30) (08/0) S760
Mont Rigi (52;)&3.230) (21297330) (2165.2233/0) 5700
Stabroek (859933/0) (:.ggo) (1 .6124,) 5672
Wideumont (630%2‘1/0) (1180.67530) (.218.3;0) 5758
Zeebrugge (8416?2‘30) (1189;‘30) (084,) 5755
Combined (sii%;:) (1670.;30) (2.71%/10) 34240

Table 3: Distribution of the images for the different webcams over the different classes.

4.1 Labelling of the images

The steps taken to label the images were exactly the same as for the images of the Mont Rigi
webcam in the previous experiment. Now, since there were only 20 days of images used for
each webcam, the relabelling step was also done.

4.2 Finding the optimal hyperparameter configuration for the CNNs

This part was done in a very similar way to the one described in section [3.1.2l However, a
few insights were used to reduce the number of configurations that had to be tested. The
top results all had a stride length of 1, and the models with a ‘sigmoid’ or ‘softplus’ activation
function performed not as good as the models with a different activation function. All other
configurations (72 in total) were again tested using KFold cross-validation with 5 folds.

Contrary to the hyperparametertuning in section now the validation accuracy was
not used as the measure to decide which configuration to choose for the final model. In this
case, the average validation recall of the ‘clear view’ and ‘fog’ categories was used and the
configuration that reached the highest value was chosen. The recall was chosen since it treats
the labels individually: what is the probability that the model will correctly predict the label, given
that the situation corresponds to a certain class. The precision is not very useful in this situation
since it also depends on the distribution of the classes over the dataset: what is the probability
that the model will predict a certain label, given that the situation does not correspond to that
class. However, since the number of ‘fog’ images in the dataset is higher than in reality due to
the selection process of the days used for labelling, this score is not used. Since the F1 score
is the arithmetic mean of the recall and precision, this metric is also not used.

The scores shown in figure (8] are the results of the chosen model based on the combined
set of images of the six webcams. For this model, however, it has to be noted that not all
configurations were tested due to lack of time and some hardware problems in the final week

14



4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES

of the project. 44 of the 72 configurations were tested, 31 of those had 2 convolutional layers
and the other 13 had 3 convolutional layers. However, since the top models all get very similar
scores, even if a non-tested model would perform better, this wouldn’t be by a large margin.
For the models based on images of individual webcams, all 72 configurations were tested. In
the following, we will refer to the model based on the combined set of images as the combined
model, while the models based on images of only one webcam will be referred to as the single
models.

The chosen combined model, for which the results are shown in figure |8, has the following
hyperparameter configuration:

3 convolutional layers

* ‘relu’ activation function

 3x3 kernel

» stride length 1

+ 16 kernels in the first convolutional layer

* 64 neurons in the first dense layer

The corresponding figures and model configurations for the single models are shown in ap-
pendix[C| The final model configurations are also summarised in table [4]

» £ © a

s | § @ 5 2

= E 8 5 |E3 2
5 2 2 5 29 2
25 c T = SEQ | =9
€= 9 c 3 °©8® 2m

- — =1 = = 7 -

<3 2 Nz & 89 5

c O g = o

Q < >0 N

(&] Z < o)
Diepenbeek 2 tanh 3x3 1 16 64
Melle 3 tanh 4x4 1 8 64
Mont Rigi 2 relu 4x4 1 8 64
Stabroek 2 tanh 4x4 1 8 64
Wideumont 2 relu 3x3 1 8 128
Zeebrugge 2 elu 3x3 1 16 64

| Combined || 3 | relu | 3x3 | 1 | 16 | 64 |

Table 4: Configurations of the final models used for predicting images of six webcams with three
classes.

4.3 Performance of the models

To test the performance of the models, the images were again split into a training set containing
80% of the images and a test set containing the other 20% of the images. To be able to compare

15



4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES

Validation Accuracy Validation Precision
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Figure 8: Results of the hyperparametertuning for the model based on the combined set of images
of the six webcams.

the results between the combined model and the single models, the 80/20 split was made for
all webcams individually and the resulting training and testing sets were combined into two final
sets for the combined model. Important to note here is that this 80/20 split was made randomly
without paying particular attention to keeping the class distribution constant in the training and
testing set.

Figure [9] shows the confusion matrix constructed for the combined model based on the
testing set. The overall accuracy is 97.6%, but all individual classes have a recall of almost 95%,
with the ‘clear view’ and ‘fog’ classes even more. We can conclude that the model performs
very well.

The confusion matrices shown in figure [T0]compare the performance of the combined model
with the performance of the single models. Each confusion matrix in the figure is calculated
from the respective test set. The left column shows the confusion matrices of the single models,
while the right column shows the confusion matrices of the combined model. A few general
observations can be made:

» The overall performance is very similar between the single models and the combined
model.

» The single model always performs better than the combined model in one of the ‘clear
view’ or ‘fog’ classes, and worse in the other one. The class where the single model per-
forms better is almost always the ‘clear view’ class, except for the webcam in Zeebrugge.

16
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Figure 9: Confusion matrix of the combined model. The confusion matrix is based on a test set
containing 20% of the images.

* The combined model always performs better than the single models for images corres-
ponding to the ‘too hard to see’ class.

» The combined model never predicts a ‘too hard to see’ label for webcams for which such
images do not exist.

The fact that the single models and the combined model each perform better in one of the
‘clear view’ and ‘fog’ classes, can be explained by how often each model predicts a certain
class. Take the webcam in Diepenbeek as an example: the single model predicts ‘clear view’
more often, leading to a better recall for the ‘clear view’ class and a lower recall for the ‘fog’
class. Since most single models have a higher recall for the ‘clear view’ class, more false fog
alarms can be expected, however the number of misses for the ‘fog’ class is lower. Depending
on what one wants from the model, the single models or the combined model can be used.

4.4 Performance on images of an unseen webcam

A final experiment that is performed, is a test to check whether the combined model can be
used to also classify images of other webcams. To achieve this, the combined model was
trained on all images of five of the six webcams and the images of the other webcam where
then used as test set. This was done for each webcam.

The results are shown in the confusion matrices in figure [T1] From those figures, it is clear
that the combined model cannot be used to classify images from webcams not included in the
training set. For the webcam in Diepenbeek, the model classifies the images too often in the
‘clear view’ class. For the webcams in Melle, Wideumont and Zeebrugge, the model classifies
the images too often in the ‘fog’ class. For the webcams in Mont Rigi and Stabroek, there is a
mix between those two cases.
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(f) Mont Rigi, combined model
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Figure 10: Confusion matrices for the six webcams. The left images show the results of the models
based on only images of a single webcam, the right images show the results of the model based on
the combined set of images of all webcams.
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4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES
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Figure 10: Confusion matrices for the six webcams. The left images show the results of the models
based on only images of a single webcam, the right images show the results of the model based on
the combined set of images of all webcams.
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4 EXPERIMENT 2:

MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES
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Figure 11: Confusion matrices for six models. The models are each trained on images of five
webcams and tested on the images of the sixth webcam. For each confusion matrix, this sixth
webcam is also mentioned below the figure.
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4 EXPERIMENT 2: MULTIPLE WEBCAMS AND THREE VISIBILITY CLASSES

4.5 Conclusion

Several models were constructed based on images of six webcams divided into three classes.
The single models typically have a comparable performance to the combined model. Depend-
ing on the user’s preference (fewer misses or fewer false alarm), one can either choose to
use the single models to classify new images for the respective webcam, or one can use the
combined model to classify new images of all webcams.

However, the models cannot be used to classify images of webcams not included in the
training set. Hence, a minimal labelling effort is required for each webcam (the whole process
of selecting the 20 days and labelling and relabelling those images takes 3-4 hours). After
labelling the images of the new webcam, a model has to be trained. This can take a few days
depending on whether the hyperparametertuning step is done or if a generic model configura-
tion is chosen. However, contrary to the labelling process, the training process of the model is
fully automated and can run without any active supervision.
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A DISTRIBUTION OF THE IMAGES OVER THE DIFFERENT CLASSES

A Distribution of the images over the different classes

| clear view | dawn/dusk | fog | night | reduced visibility || total
38295 6436 8685 40978 8058 102452
(37.4%) (6.3%) (8.5%) (40.0%) (7.9%)

Table 5: Distribution of the images for the Mont Rigi webcam over the different classes (corresponds
to table[T]in the text).

Table 6: Distribution of the images for the different webcams over the different classes (corresponds

] | clear view | fog | too hard to see || total \

Diepenbeek (842%3/0) (1 3.87%0) (08/0) 5595
Melle (8%6.;30) (1191.:13;0) (08/0) 5760
Mont Rigi (5208.230) (212??5(3)30) (.21:5;0) 5700
Stabroek (859933/0) (9?530) (1 .6124,) 5672
Wideumont (630‘?2‘]/0) (1180.67330) (218.330) 5758
Zeebrugge (8?2&) (1180.;5/0) (o?’/o) 5755
Combined (32.31%2) (1679;30) (2.712) 34240

to table[3]in the text).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B Examples of webcam images and their classification

B.1 Examples of the images of the Mont Rigi webcam (five classes)

(a) clear view (b) dawn/dusk

(c) fog (d) night

(e) reduced visibility

Figure 12: Examples of the images of the Mont Rigi webcam (five classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2 Examples of the images of the multiple webcams (three classes)

B.2.1 Diepenbeek

(a) clear view, example 1 (b) clear view, example 2

IV NETENITECT A o ZEZPCPICPIE Lﬂjw

(c) fog, example 1 (d) fog, example 2

Figure 13: Examples of the images of the Diepenbeek webcam (three classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2.2 Melle

' M

(a) clear view, example 1 (b) clear view, example 2

(c) fog, example 1 (d) fog, example 2

Figure 14: Examples of the images of the Melle webcam (three classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2.3 Mont Rigi

(a) clear view, example 1 (b) clear view, example 2

(c) fog, example 1 (d) fog, example 2

(e) too hard to see

Figure 15: Examples of the images of the Mont Rigi webcam (three classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2.4 Stabroek

(a) clear view, example 1 (b) clear view, example 2

(c) fog, example 1 (d) fog, example 2

(e) too hard to see, example 1 (f) too hard to see, example 2

Figure 16: Examples of the images of the Stabroek webcam (three classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2.5 Wideumont

(a) clear view, example 1 (b) clear view, example 2

(c) fog, example 1 (d) fog, example 2

(e) too hard to see, example 1 (f) too hard to see, example 2

Figure 17: Examples of the images of the Wideumont webcam (three classes).
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B EXAMPLES OF WEBCAM IMAGES AND THEIR CLASSIFICATION

B.2.6 Zeebrugge

(a) clear view, example 1 (b) clear view, example 2

ZYZI= Y= I YT e S G

(c) fog, example 1 (d) fog, example 2

Figure 18: Examples of the images of the Zeebrugge webcam (three classes).
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C Hyperparametertuning results (three classes)

C.1 Diepenbeek
Configuration of the final model:

» 2 convolutional layers

‘tanh’ activation function
* 3x3 kernel

stride length 1

16 kernels in the first convolutional layer
* 64 neurons in the first dense layer

Validation Accuracy Validation Precision
1.00
0.985 - /N
0.98 - M
0.980
0.975 A 0.96 A
0.970 A
0.94
0.965 -
0.960 1 0.92 4 — clearview
. fog
0.955 - —— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
ros o] /__/\/J\/W
0.96 1 0.96 A
0.94 0.94
0.97 - —— clearview 0.92 4 —— clearview
fog fog
—— toohard —— toohard
0.90 T T T T 0.90 T T T T
5 10 15 20 5 10 15 20

Figure 19: Results of the hyperparametertuning for the model based on the images of the Diepen-
beek webcam.
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C.2 Melle
Configuration of the final model:

« 3 convolutional layers

* ‘tanh’ activation function

* 4x4 kernel

* stride length 1

+ 8 kernels in the first convolutional layer

* 64 neurons in the first dense layer

Validation Accuracy Validation Precision
1.00
. /\/M
0.98 A Al
0.98
0.96
0.97 A
0.96 + 0.94
0.95 0.92 - —— clearview
fog
0.94 + —— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
1.00 1.00
/\J\/\_ﬁ/
0.98 0.98 A
0.96 0.96
0.94 0.94 -
0.92 1 —— clearview 0.92 1 —— clearview
fog fog
—— toohard —— toohard
0.90 T T T T 0.90 T T T T
5 10 15 20 5 10 15 20

Figure 20: Results of the hyperparametertuning for the model based on the images of the Melle
webcam.
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C.3 Mont Rigi
Configuration of the final model:

+ 2 convolutional layers

‘relu’ activation function

* 4x4 kernel

stride length 1

8 kernels in the first convolutional layer

* 64 neurons in the first dense layer

Validation Accuracy Validation Precision
1.00
0.95 A
0.98
0.94
0.96 Py
0.93
0.92 4 0.94
\
0.91 0.92 4 — cClearview
fog
0.90 1 —— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
1.00 1.00
0.98 0.98
0.96 0.96
0.94 0.94 /\/\/—
0.92 4 clear\.rlew 0.92 1 —— clearview
fog
_— toohard ]’.\ —— toohard
0.90 0.90 T T T T
5 10 15 20

Figure 21: Results of the hyperparametertuning for the model based on the images of the Mont
Rigi webcam.
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C.4 Stabroek

Configuration of the final model:

+ 2 convolutional layers

» ‘tanh’ activation function

* 4x4 kernel

« stride length 1

+ 8 kernels in the first convolutional layer

* 64 neurons in the first dense layer

Validation Accuracy

Validation Precision

1.00
0985 | - /—J\/-/\/\/\
-t
0.980
0.96 1
0.975 A
0.94 4
0.970 A -
0.92 - — dlearview
fog
0.965 - —— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
Hoe SN T +00
. . /_/\_/\/‘—/\’—’N
0.96 1 0.96 1
0.94 4 0.94 4
0.92 - — dlearview 0.92 - — dlearview
fog fog
—— toohard —— toohard
0.90 T T T T 0.90 T T T T
5 10 15 20 5 10 15 20

Figure 22: Results of the hyperparametertuning for the model based on the images of the Stabroek

webcam.
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C.5 Wideumont
Configuration of the final model:

+ 2 convolutional layers

‘relu’ activation function

* 3x3 kernel

stride length 1

8 kernels in the first convolutional layer

* 128 neurons in the first dense layer

Validation Accuracy Validation Precision
1.00
0.980 4
0.975 0.98 -
0.970 4
0.965 - 0.96 7
0.960 +
0.94
0.955 4
0.950 4 0.92 1 _ fc(l)ear\..rlev\.r
g
0.945 +
—— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
1.00 1.00
0.98 - 0.98 - //—\,\/v
0.96 1 0.96
0.94 4 0.94 1
0.92 - — dlearview 0.92 - —— clearview
fog fog
—— toohard —— toohard
0.90 T T T T 0.90 T T T T
5 10 15 20 5 10 15 20

Figure 23: Results of the hyperparametertuning for the model based on the images of the Wideu-
mont webcam.
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C HYPERPARAMETERTUNING RESULTS (THREE CLASSES)

C.6 Zeebrugge
Configuration of the final model:

+ 2 convolutional layers

* ‘elu’ activation function

» 3x3 kernel

« stride length 1

» 16 kernels in the first convolutional layer

* 64 neurons in the first dense layer

Validation Accuracy Validation Precision
1.00
0.99
- . /J\/\/\
0.97
0.96
0.96 -
0.94 -
0.95
0.94 - 0.92 4 — clearview
fog
0.93 4 —— toohard
T T T T 0.90 T T T T
5 10 15 20 5 10 15 20
Validation Recall Validation F1 score
1.00 1.00
0.98 - W\J\ 0.98
0.96 - 0.96 -
0.94 0.94
0.92 1 —— clearview 0.92 1 —— clearview
fog fog
—— toohard —— toohard
0.90 T T T T 0.90 T T T T
5 10 15 20 5 10 15 20

Figure 24: Results of the hyperparametertuning for the model based on the images of the
Zeebrugge webcam.
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