

PySTEPS-BE ensemble nowcasts for extreme rainfall warnings in Belgium

F. Erdmann¹, L. De Cruz^{1,2}, M. Reyniers¹, R. Reinoso-Rondinel^{3,1}, D. R. Poelman¹, M. Van Ginderachter¹ ¹ Royal Meteorological Institute of Belgium (RMI), Brussels, Belgium

² Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium

³ Civil Engineering, Hydraulics & Geotechnics, KU Leuven, Leuven, Belgium

Improve current deterministic nowcast warnings for precipitation by extreme Objective: rainfall warnings that include uncertainty information from an ensemble nowcast.

1. PySTEPS-BE ensemble nowcast

Based on STEPS [1, 2], built in the open-source framework pySTEPS [3]

Input:

- > Observations: radar rainfall fields, 1km resolution, 5min frequency
- NWP: ALARO+AROME at 1.3km, 5min accumulations

Output:

24-member ensemble, every 10 minutes

> Forecast time step of 5min for up to +6 hours lead time



Fig. 3: Minimum overlap method

3. Pixels to municipalities

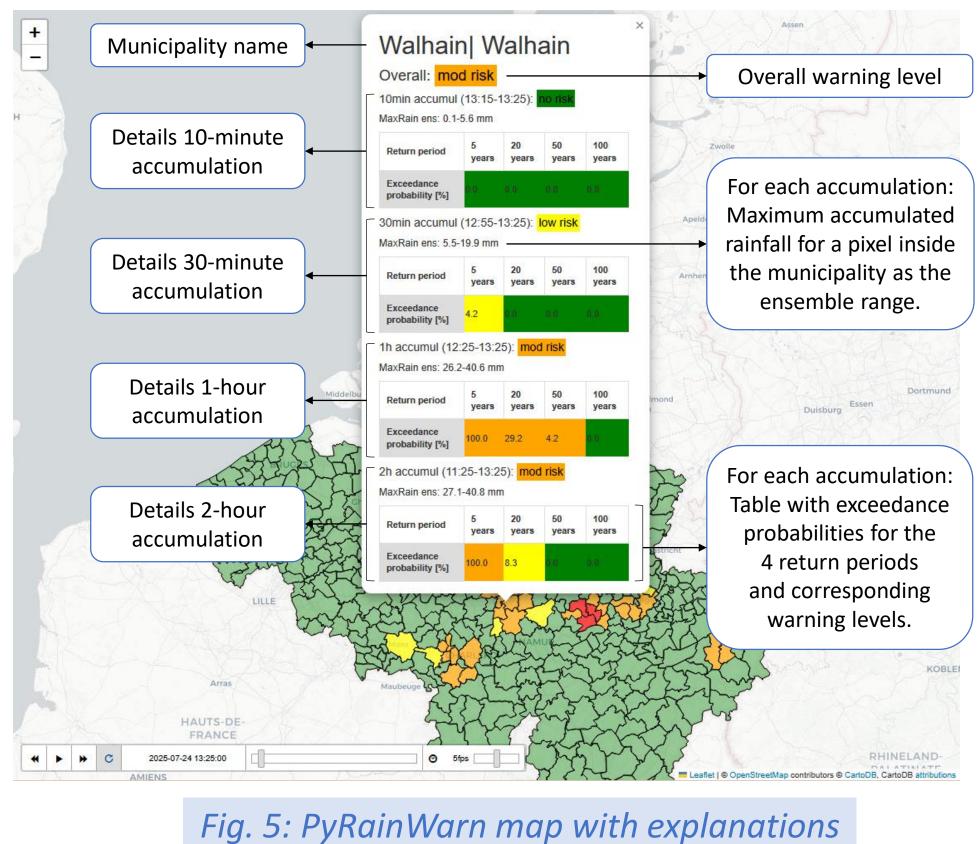
The administrative scales for warnings are the municipalities.

- Match the pixels of the regular grid to the shape of the municipality (minimum overlap method, Fig. 3).
- > If any matched pixel exceeds the local threshold, the evaluated pySTEPS-BE member contributes as active warning

and the exceedance count of the municipality is increased by 1. The exceedance count is always smaller or equal to the ensemble size.

The ensemble-based probability can then be calculated as **exceedance probability** = exceedance count / ensemble size.

5. PyRainWarn output


PyRainWarn = pySTEPS-based rainfall warnings

> Animated map to display the warnings

Valenciennes

- Details as a popup window for each municipality
- JSON file to list the municipality warnings
- Scan me!

References

- Bowler, N.E., Pierce, C.E. and Seed, A.W. (2006): https://doi.org/10.1256/qj.04.100
- Seed, A.W., Pierce, C.E., and Norman, K. (2013): https://doi.org/10.1002/wrcr.20536 Pulkkinen, S. et al. (2019): https://doi.org/10.5194/gmd-12-4185-2019
- [3]
- Imhoff, R.O. et al. (2023): https://doi.org/10.1002/qj.4461
- Van de Vyver, H. (2012): https://doi.org/10.1029/2011wr011707 [5]

2. Extreme rainfall return periods

Extreme rainfall is defined by spatial Generalized Extreme Value (GEV) models based on long-term time series of rain gauge data [5].

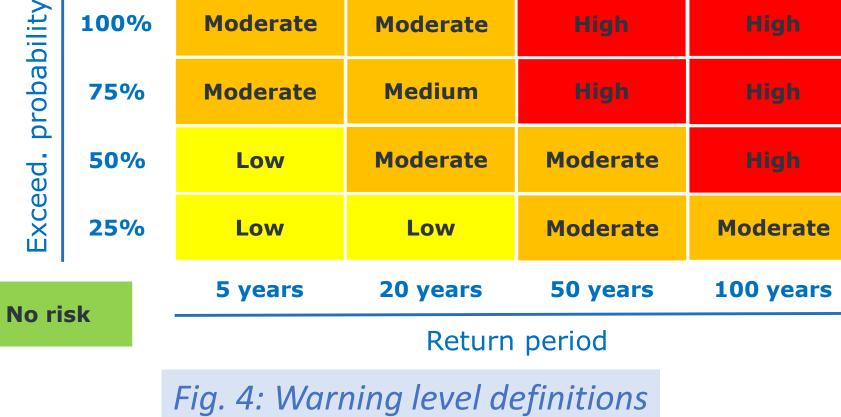

- Mean annual rainfall as covariate
- The return level z(T) is defined as the value that is exceeded, on average, once every T years.
- The **return period** (T) is the time interval over which the return level is expected to recur. Longer return periods mean more extreme rainfall.
- Spatial resolution grid: 1km×1km
- > Compare the nowcast of each pySTEPS-BE member to the return levels and identify pixels with exceeded thresholds and the active warning members.

Fig. 2: Return level example

4. Warning levels

The exceedance probability and the return periods are used to define the warning level.

- > 4 levels: green (no risk), yellow (low risk), orange (moderate risk), and red (high risk)
- > 4 return periods
- 4 probability thresholds
- These calculations are repeated for the accumulation times of 10min, 30min, 1h, and 2h.

- > If the accumulation
 - time is longer than the forecast time step, observations are included.
- The most severe warning level is displayed for each municipality.

Outlook

- > Operational at the RMI since October 2025
- > Validation and tuning of the warning levels if needed
- > User feedback and adaption to their needs
- > PyRainWarn extreme rainfall warnings in the RMI mobile app

Acknowledgements

The project is funded by the Service public de Wallonie (SPW). We thank all our colleagues who contributed to establishing pySTEPS-BE as the operational ensemble nowcasting system at the RMI and to run pyRainWarn as a pre-operational product in real time.

